python下对hsv颜色空间进行量化操作

更新:优化了代码,理由numpy的ufunc函数功能替换了之前的双重for循环,测试图片大小为692*1024*3,优化前运行时间为6.9s,优化后为0.8s。

由于工作需要,需要计算颜色直方图来提取颜色特征,但若不将颜色空间进行量化,则直方图矢量维数过高,不便于使用。但是看了opencv API后并未发现提供了相关函数能够在计算颜色直方图的同时进行量化,因此这部分功能只能自己实现。下面分为两个部分进行介绍:

一、颜色空间量化表

由于RGB模型不够直观,不符合人类视觉习惯,因此在进行颜色特征提取前,需要将照片从RGB颜色模型转换为更符合人类视觉的HSV模型。在提取颜色特征时,最常用的方法之一为颜色直方图法,但一张图片中出现的颜色一般特别多,导致直方图矢量的维数较高,因此需要对HSV空间进行量化。根据人眼对颜色的感知特性,采用较为常用的量化方法,即按照如下对应关系进行量化:

基于上述量化表,将各颜色分量按照下述公式合成为72维一维矢量:

二、量化代码

代码使用纯python写成,效率偏低,处理388*500像素的照片用时1.45秒。在quantilize函数中,未使用if-else判断语句,因此至少节省了1/3的时间。但这个速度显然是无法令人满意的,用C++效率应该会更高点。如果有人有更好的想法,欢迎在下方评论交流。

#-*-coding:utf-8-*-
import cv2
import numpy as np
from datetime import datetime
from matplotlib import pyplot as plt

def colors(imagepath):
  img = cv2.imread(imagepath)
  hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
  nhsv = np.zeros(hsv.shape[:2], dtype=np.uint8)
  t2 = datetime.now()
  for i in range(hsv.shape[0]):
    for j in range(hsv.shape[1]):
      nhsv[i][j] = quantilize(hsv[i][j])
  print datetime.now() - t2
  hist = cv2.calcHist([nhsv], [0], None, [72], [0,71]) # 40x faster than np.histogramfaster than np.histogram
  plt.plot(hist,color = 'r')
  plt.xlim([0, 72])
  plt.show()

def quantilize(value):
  '''hsv直方图量化
  value : [21, 144, 23] h, s, v
  opencv中,h-[0,180], s-[0,255], v-[0,255]
  '''
  #
  value[0] = value[0] * 2
  hlist = [20, 40, 75, 155, 190, 270, 290, 316, 360]
  svlist = [21, 178, 255]
  for i in range(len(hlist)):
    if value[0] <= hlist[i]:
      h = i % 8
      break
  for i in range(len(svlist)):
    if value[1] <= svlist[i]:
      s = i
      break
  for i in range(len(svlist)):
    if value[2] <= svlist[i]:
      v = i
      break
  return 9 * h + 3 * s + v

以上,欢迎批评交流~

三、更新

#-*-coding:utf-8-*-
import cv2
import numpy as np
from datetime import datetime
from matplotlib import pyplot as plt

hlist = [20, 40, 75, 155, 190, 270, 290, 316, 360]
svlist = [21, 178, 255]

def quantilize(h, s, v):
  '''hsv直方图量化'''
  # value : [21, 144, 23] h, s, v
  h = h * 2
  for i in range(len(hlist)):
    if h <= hlist[i]:
      h = i % 8
      break
  for i in range(len(svlist)):
    if s <= svlist[i]:
      s = i
      break
  for i in range(len(svlist)):
    if v <= svlist[i]:
      v = i
      break
  return 9 * h + 3 * s + v

quantilize_ufunc = np.frompyfunc(quantilize, 3, 1) # 自定义ufunc函数,即将quantilize函数转化为ufunc函数,其输入参数为3个,输出参数为1个。

def colors(img):
  hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
  nhsv = quantilize_ufunc(hsv[:,:,0], hsv[:,:,1], hsv[:,:,2]).astype(np.uint8) # 由于frompyfunc函数返回结果为对象,所以需要转换类型
  hist = cv2.calcHist([nhsv], [0], None, [72], [0,71]) # 40x faster than np.histogram
  hist = hist.reshape(1, hist.shape[0]).astype(np.int32).tolist()[0]
  return hist

if __name__ == '__main__':
  img_path = path + 'test.jpg'
  img = cv2.imread(img_path)
  colors(img)

结果

[0, 11, 31490, 100, 3, 32685, 0, 28, 313, 0, 0, 3268, 31, 0, 558364, 6, 1, 441, 0, 0, 2301, 92, 0, 34056, 0, 1, 396, 0, 0, 2682, 84, 5, 712, 0, 137, 55, 0, 0, 1215, 20, 2, 224, 0, 3, 0, 0, 0, 13838, 56, 0, 23474, 63, 23, 1, 0, 0, 4764, 0, 0, 2335, 0, 25, 27, 0, 0, 2302, 5, 0, 1676, 1, 59, 389]

以上这篇python下对hsv颜色空间进行量化操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 使用Python写一个量化股票提醒系统

    大家在没有阅读本文之前先看下python的基本概念, Python是一种解释型.面向对象.动态数据类型的高级程序设计语言. Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年. 像Perl语言一样, Python 源代码同样遵循 GPL(GNU General Public License)协议. 本文是小兵使用万能的Python写一个量化股票系统!下面是一个小马的迷你量化系统. 这个小迷小量化系统,麻雀虽小但是五脏俱全,我们今天先从实时提醒这个模

  • Python+Tensorflow+CNN实现车牌识别的示例代码

    一.项目概述 本次项目目标是实现对自动生成的带有各种噪声的车牌识别.在噪声干扰情况下,车牌字符分割较困难,此次车牌识别是将车牌7个字符同时训练,字符包括31个省份简称.10个阿拉伯数字.24个英文字母('O'和'I'除外),共有65个类别,7个字符使用单独的loss函数进行训练. (运行环境:tensorflow1.14.0-GPU版) 二.生成车牌数据集 import os import cv2 as cv import numpy as np from math import * from

  • opencv+python实现鼠标点击图像,输出该点的RGB和HSV值

    我就废话不多说了,大家还是直接看代码吧! import cv2 # 读取图片并缩放方便显示 img = cv2.imread('D:/6.jpg') height, width = img.shape[:2] size = (int(width * 0.2), int(height * 0.2)) # 缩放 img = cv2.resize(img, size, interpolation=cv2.INTER_AREA) # BGR转化为HSV HSV = cv2.cvtColor(img, c

  • python下对hsv颜色空间进行量化操作

    更新:优化了代码,理由numpy的ufunc函数功能替换了之前的双重for循环,测试图片大小为692*1024*3,优化前运行时间为6.9s,优化后为0.8s. 由于工作需要,需要计算颜色直方图来提取颜色特征,但若不将颜色空间进行量化,则直方图矢量维数过高,不便于使用.但是看了opencv API后并未发现提供了相关函数能够在计算颜色直方图的同时进行量化,因此这部分功能只能自己实现.下面分为两个部分进行介绍: 一.颜色空间量化表 由于RGB模型不够直观,不符合人类视觉习惯,因此在进行颜色特征提取

  • 浅谈MySQL在cmd和python下的常用操作

    环境配置1:安装mysql,环境变量添加mysql的bin目录 环境配置2:python安装MySQL-Python 请根据自身操作系统下载安装,否则会报c ++ compile 9.0,import _mysql等错误 windows10 64位操作系统可到 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载安装MySQL-Python包,至于whl和tar.gz在windows和Linux下的安装方法可查看我的上一篇文章 一 .cmd命令下的操作: 连

  • OpenCV基础HSV颜色空间*args与**kwargs滑动条传参问题

    目录 一.基础理论 1.Hue(色相) 2.Value(明度) 3.Saturation(饱和度) 二.hsv三通道及单通道效果 三.*args && **kwargs 四.滚动条控制h.s.v(min && max) 1.创建滚动条 2.回调函数 -- 阈值设置 3.回调函数 -- 感兴趣值 参考资料 一.基础理论 HSV:HSV是一种为了加快调色效率,且易于理解的概念. Hue:色相(具体的颜色) Saturation:饱和度.色彩纯净度 Value:明度 1.Hue(

  • Python下实现的RSA加密/解密及签名/验证功能示例

    本文实例讲述了Python下实现的RSA加密/解密及签名/验证功能.分享给大家供大家参考,具体如下: 原文是py2环境,而我的环境是py3,所以对原代码做了修改:decode(), encode() import rsa # 生成密钥 (pubkey, privkey) = rsa.newkeys(1024) # 保存密钥 with open('public.pem','w+') as f: f.write(pubkey.save_pkcs1().decode()) with open('pri

  • Python文件夹与文件的相关操作(推荐)

    最近在写的程序频繁地与文件操作打交道,这块比较弱,还好在百度上找到一篇不错的文章,这是原文传送门,我对原文稍做了些改动. 有关文件夹与文件的查找,删除等功能 在 os 模块中实现.使用时需先导入这个模块, 导入的方法是: import os 一.取得当前目录 s = os.getcwd() # s 中保存的是当前目录(即文件夹) 比如运行abc.py,那么输入该命令就会返回abc所在的文件夹位置. 举个简单例子,我们将abc.py放入A文件夹.并且希望不管将A文件夹放在硬盘的哪个位置,都可以在A

  • python下MySQLdb用法实例分析

    本文实例讲述了python下MySQLdb用法.分享给大家供大家参考.具体分析如下: 下载安装MySQLdb ① linux版本 http://sourceforge.net/projects/mysql-python/ 下载,在安装是要先安装setuptools,然后在下载文件目录下,修改mysite.cfg,指定本地mysql的mysql-config文件的路径 ② windows版本 网上搜索到一个http://www.technicalbard.com/files/MySQL-pytho

  • Python中文件的读取和写入操作

    从文件中读取数据 读取整个文件 这里假设在当前目录下有一个文件名为'pi_digits.txt'的文本文件,里面的数据如下: 3.1415926535 8979323846 2643383279 with open('pi_digits.txt') as f: # 默认模式为'r',只读模式 contents = f.read() # 读取文件全部内容 print contents # 输出时在最后会多出一行(read()函数到达文件末会返回一个空字符,显示出空字符就是一个空行) print '

  • Python玩转PDF的各种骚操作

    Portable Document Format(可移植文档格式),或者PDF是一种文件格式,可以用于跨操作系统的呈现和文档交换.尽管PDF最初是由Adobe发明的,但它现在是由国际标准化组织(ISO)维护的开放标准.你可以通过使用PyPDF2包在Python中处理已先存在的PDF. PyPDF2是一个纯Python包,可用于许多不同类型的PDF操作. 本文将带你了解如何执行以下操作: 从Python中提取PDF中的文档信息 旋转页面 合并PDF 拆分PDF 添加水印 加密PDF 一.pyPdf

  • python 下 CMake 安装配置 OPENCV 4.1.1的方法

    CMake 安装配置 OPENCV 4.1.1 解决各种问题 方法一 python 可以直接pip install opencv-contrib-python==3.4.x.x 安装,老版本的库包含SIFT等算法.但是,python不支持GPU的,对于JAVA等其他语言想调用opencv或者想使用更更高级的算法,那么还是必须得安装更高版本,下面介绍另外一种方法. 这个方法不提供SIFT和 SURF算法,因为这两个算法申请了专利,所有主要通过CMake设置OPENCV_ENABLE_NONFREE

  • python爬虫框架scrapy实现模拟登录操作示例

    本文实例讲述了python爬虫框架scrapy实现模拟登录操作.分享给大家供大家参考,具体如下: 一.背景: 初来乍到的pythoner,刚开始的时候觉得所有的网站无非就是分析HTML.json数据,但是忽略了很多的一个问题,有很多的网站为了反爬虫,除了需要高可用代理IP地址池外,还需要登录.例如知乎,很多信息都是需要登录以后才能爬取,但是频繁登录后就会出现验证码(有些网站直接就让你输入验证码),这就坑了,毕竟运维同学很辛苦,该反的还得反,那我们怎么办呢?这不说验证码的事儿,你可以自己手动输入验

随机推荐