C++动态内存管理详解

目录
  • 1.C/C++程序地址空间
  • 2.C语言动态内存管理
    • (1)malloc
    • (2)calloc
    • (3)realloc
    • (4)free
  • 3.C++动态内存管理
    • (1)C++为什么要设计一套自己专属的动态内存管理方式?
    • (2)new/delete定义
      • 1)new/delete操作内置类型
      • 2)new/delete操作自定义类型
      • (3)new/delete的实现原理
  • 4.malloc/free和new/delete的区别
    • 共同点:
    • 不同点:
  • 5.内存泄漏
  • 总结

1.C/C++程序地址空间

计算机物理内存的大小是固定的,在32位系统上,地址空间可达4G(2^32),这4G按照3:1的比例分配给用户进程和内核。程序地址空间的构成:从上往下依次是:内核空间、栈区、共享区、堆区、未初始化数据区、初始化数据区、代码区。而动态内存管理所申请的空间都是在堆区,在堆区动态开辟的空间都需要我们手动去释放它,否则会造成内存泄漏。

内核空间:操作系统相关代码

栈区:从高地址向低地址增长

共享区:加载动态库,共享内存

堆区:从低地址向高地址增长

未初始化全局数据区

已初始化全局数据区

代码区:可执行代码及只读常量

2.C语言动态内存管理

(1)malloc

void* malloc(size_t size);

malloc()函数只有一个参数,即要分配的内存空间的大小。

如果开辟成功,则返回一个指向开辟好空间的指针,如果开辟失败,则返回一个空指针,因此每次申请完空间都需要判空。
malloc()函数返回值的类型是void*,在使用时需要自己强制转换。

(2)calloc

void* calloc (size_t num, size_t size);

calloc()函数有两个参数,分别是元素的数目和每个元素的大小,这两个参数的乘积就是要分配的内存空间的大小。
malloc申请后空间的值是随机的,并没有进行初始化,而calloc在申请后,对空间逐一进行初始化,并设置值为0;
calloc由于给每一个空间都要初始化,所以效率必然比malloc低。

(3)realloc

void* realloc (void* ptr, size_t size);

realloc()函数就实现对 动态开辟 内存大小的调整。

realloc()函数包含两个参数,分别是要调整的内存地址和调整的新大小。

realloc在调整内存空间时有两种情况:

情况1:原有空间之后有足够大的空间,我们就把需要扩展的内存直接放到原来空间的后面,原来空间的数据不发生变化。

情况2:原有空间之后没有足够大的空间,那就在堆上找一个合适大小的连续空间,将原来内存中的数据移动到新空间,然后将这个新空间的地址返回。

(4)free

void* free(void* ptr);

free函数用来释放动态开辟的函数。

3.C++动态内存管理

(1)C++为什么要设计一套自己专属的动态内存管理方式?

C++作为一门在C语言的基础上发展而来的语言,它本身是完全兼容C语言的,也就是说,C语言的动态内存管理方式在C++中依旧可以正常使用。那它为什么还要设计一套属于自己的动态内存管理方式呢?

在C++中,使用malloc/free申请或释放内置类型的空间并没有任何问题,但我们知道C++引入了类和对象的概念,而这一点带来的影响就是并不能使用malloc从堆上为对象申请空间,因为malloc并不会去主动的去调用构造函数,这意味着其并不能成为真正的对象。所以如果使用malloc只是申请了一段和对象同样大小的空间而言,并非对象。同理使用free并不能释放堆上对象的空间,因为free并不会调用析构函数去释放对象中的资源。

而且C++所提供的动态内存管理方式使用起来更加方便、简单,对用户更加友好,并且不用去担心空间可能会申请失败的情况。

(2)new/delete定义

new操作符的格式:

new 类型;
new 类型(初值);
new 类型[];

delete操作符的格式:

delete 指针变量;
delete[] 指针变量;

1)new/delete操作内置类型

int main(){
	int *p1 = new int; //动态申请一个int类型的空间
	int *p2 = new int(10);  //动态申请一个int类型的空间并初始化为10
	int *p3 = new int[3];  //动态申请10个int类型的空间
	//释放申请的空间
	delete p1;
	delete p2;
	delete[] p3;
	return 0;
}

2)new/delete操作自定义类型

//定义一个简单的类
class Data{
public:
	//构造函数
	Data(int data = 0) : _data(data)
	{
		cout << "Data() :" << this << endl;
	}
	//析构函数
	~Data()
	{
		cout << "~Data() : " << this << endl;
	}
private:
	int _data;
};
int main()
{
	Data *d1 = new Data;  //申请单个Data类型的对象
	Data *d2 = new Data(10);  //申请单个Data类型的对象并初始化
	Data *d3 = new Data[5];  //申请5个Data类型的对象
	//依次释放申请的对象资源
	delete d1;
	delete d2;
	delete[] d3;
	//使用new/delete为类对象申请或释放空间时会主动调用构造函数/析构函数完成对象的构造/资源的清理。
	return 0;
}

(3)new/delete的实现原理

new 和 delete在堆上申请和释放空间的时候,在底层实际上调用的是operator new和operator delete两个全局函数。

而operator new和operator delete最终还是调用malloc和free来申请和释放空间。

1)new/delete内置类型的原理

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。也就是说使用new操作符不需要进行判空。

2)new/delete自定义类型的原理

new的原理

1.调用operator new函数申请空间

2.在申请的空间上执行构造函数,完成对象的构造

delete的原理

1.在空间上执行析构函数,完成对象中资源的清理工作

2.调用operator delete函数释放对象的空间

new[]的原理

1.调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请

2.在申请的空间上执行N次构造函数

delete[]的原理
1.在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理

2.调用operator delete[]释放空间,在operator delete[]中实际调用operator delete来释放空间

4.malloc/free和new/delete的区别

共同点:

都是从堆上申请空间,并且需要用户手动释放。

不同点:

1.malloc和free是函数,new和delete是C++中的操作符

2.malloc申请的空间不会初始化,new可以初始化

3.malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上类型即可

4.malloc的返回值为void * , 在使用时必须强转,new不需要,因为new后跟的是空间的类型

5.malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常

6.申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理

5.内存泄漏

内存泄漏是指你向系统申请分配内存进行使用(new/malloc),然后系统在堆内存中给这个对象申请一块内存空间,但当我们使用完了却没有归还给系统(delete),导致这个不使用的对象一直占据内存单元,造成系统将不能再把它分配给需要的程序。
一次内存泄漏的危害可以忽略不计,但是内存泄漏堆积则后果很严重,无论多少内存,迟早会被占完,造成内存泄漏。

总结

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 带你了解C++的动态内存分配

    目录 new与delete运算符 动态分配数组 动态分配字符串 总结 new与delete运算符 数组在定义时就规定了其长度,这使得它的内存空间也固定了下来,这称为静态内存分配. 内存申请大了,会浪费空间:申请小了,又可能会抛弃. 以上只能间接引用,没有直接的标识符. 注意:new得到的是一个指针. 销毁的意义就像是家没了,但是地图上仍然显示你家的地址. 在delete后,需要用NULL进行赋值,避免迷途指针的存在. 只要它不消亡,我们就能一直使用它,有点像全局变量. 动态分配数组 多维数组本质

  • C++使用动态内存分配的原因解说

    上节我们讲了C++程序的内存分布.C++程序的内存分布 本节来介绍为什么要进行内存分配. 按需分配,根据需要分配内存,不浪费. 内存拷贝函数void* memcpy(void* dest, const void* src, size_t n); 从源src中拷贝n字节的内存到dest中.需要包含头文件#include <string.h> #include <stdio.h> #include <string.h> using namespace std; int ma

  • 深入理解C++中的new/delete和malloc/free动态内存管理及区别介绍

    malloc/free和new/delete的区别 malloc/free是C/C++标准库的函数:new/delete是C++操作符. malloc/free只是动态分配内存空间/释放空间:new/delete除了分配空间还会调用构造函数和析构函数进行初始化与清理资源. malloc/free需要手动计算类型大小且返回值类型为void*:new/delete可自动计算类型的大小,返回对应类型的指针. malloc/free管理内存失败会返回0:new/delete等的方式管理内存失败会抛出异常

  • C++ 动态内存分配详解(new/new[]和delete/delete[])

    一.为什么需要动态内存分配? 在C++程序中,所有内存需求都是在程序执行之前通过定义所需的变量来确定的. 但是可能存在程序的内存需求只能在运行时确定的情况. 例如,当需要的内存取决于用户输入. 在这些情况下,程序需要动态分配内存,C ++语言将运算符new和delete合成在一起. (1)特点 1.C++中通过new关键字进行动态内存申请 2.C++中的动态内存分配是基于类型进行的 3.delete关键字用于内存释放 (2)语法 ①变量申请: Type* pointer = new Type;

  • c++ 动态内存分配相关总结

    下面随笔是关于c++动态内存分配. 动态申请内存操作符 new new 类型名T(初始化参数列表) 功能:在程序执行期间,申请用于存放T类型对象的内存空间,并依初值列表赋以初值. 结果值:成功:T类型的指针,指向新分配的内存:失败:抛出异常. 释放内存操作符delete delete 指针p 功能:释放指针p所指向的内存.p必须是new操作的返回值. //例1 动态创建对象举例 #include <iostream> using namespace std; class Point { pub

  • C++动态内存管理详解

    目录 1.C/C++程序地址空间 2.C语言动态内存管理 (1)malloc (2)calloc (3)realloc (4)free 3.C++动态内存管理 (1)C++为什么要设计一套自己专属的动态内存管理方式? (2)new/delete定义 1)new/delete操作内置类型 2)new/delete操作自定义类型 (3)new/delete的实现原理 4.malloc/free和new/delete的区别 共同点: 不同点: 5.内存泄漏 总结 1.C/C++程序地址空间 计算机物理

  • c++动态内存管理详解(new/delete)

    目录 前言 用法上 对内置类型 对自定义类型 new/delete底层原理 重载类的专属operatornew和operatordelete 定位new new/delete与malloc/free区别总结 内存泄漏 总结 前言 想必大家对c语言的动态内存分配并不陌生,忘了的小伙伴也可以看看我的这篇文章C语言动态内存分配 c语言的动态内存分配由于有些地方用起来比较麻烦同时检查错误的机制不适合c++,因此c++引入new/delete操作符进行内存管理,下面我们来深入探讨c++为什么要引入new/

  • JVM内存管理之JAVA语言的内存管理详解

    引言 内存管理一直是JAVA语言自豪与骄傲的资本,它让JAVA程序员基本上可以彻底忽略与内存管理相关的细节,只专注于业务逻辑.不过世界上不存在十全十美的好事,在带来了便利的同时,也因此引入了很多令人抓狂的内存溢出和泄露的问题. 可怕的事情还不只如此,有些使用其它语言开发的程序员,给JAVA程序员扣上了一个"不懂内存"的帽子,这着实有点让人难以接受.毕竟JAVA当中没有malloc和delete.没有析构函数.没有指针,刚开始接触JAVA的程序员们又怎么可能接触内存这一部分呢,更何况有不

  • C语言与C++中内存管理详解

    目录 内存分布 动态内存管理方式-堆区 C语言动态内存管理 C++动态内存管理 new和delete的用法 operator new与operator delete函数 new和delete的实现原理 定位new表达式 高频面试题 重点new/delete和malloc/free的区别 内存泄漏 内存分布 主要段及其分布 ​ 每个程序运行起来以后,它将拥有自己独立的虚拟地址空间.这个虚拟地址空间的大小与操作系统的位数有关系.32位硬件平台的虚拟地址空间的地址可以从0~2^32-1,即0x0000

  • C++内存管理详解使用方式

    目录 c++中内存管理的方式 new和delete操作符的使用方式 operator new和operator delete函数 new和delete的原理内部实现 内置类型 自定义类型 c++中内存管理的方式 在c语言中,我们拥有malloc和free等函数可以对内存进行动态管理 但是总体来说不是很方便,所以c++拥有了一种新的方式来对内存进行管理:通过new和delete操作符来对内存进行动态分配 new和delete操作符的使用方式 new操作符的使用方式: #include<iostre

  • C语言 动态内存分配详解

    C语言 动态内存分配详解 动态内存分配涉及到堆栈的概念:堆栈是两种数据结构.堆栈都是数据项按序排列的数据结构,只能在一端(称为栈顶(top))对数据项进行插入和删除. 栈(操作系统):由操作系统自动分配释放 ,存放函数的参数值,局部变量的值等.其操作方式类似于数据结构中的栈. 堆(操作系统): 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收,分配方式倒是类似于链表. \在C语言中,全局变量分配在内存中的静态存储区,非静态的局部变量(包括形参)是分配在内存的动态存储区,该存储区被

  • C语言动态内存函数详解

    目录 动态开辟空间的原因 1.malloc函数 2.free函数 3.calloc函数 4.realloc函数 总结 动态开辟空间的原因 静态开辟空间是固定的,数组在申明的时候必须指定数组的长度,在编译的时候分配内存,但是我们在实际情况中对于内存空间的需求,不仅仅是上述的情况,有时候我们需要的空间只有在运行之后才能知道,所以需要开辟一个动态内存空间,满足更多需求. 1.malloc函数 void* malloc (size_t size); malloc函数是向内存申请一块连续的空间,并返回指向

  • C语言动态内存规划详解

    目录 动态内存规划 动态内存函数的介绍 总结 动态内存规划 用C语言写程序时,因为语言的一些特性使用数组的时候只能用常量来申明数组,就导致数组的内存被卡得很死,不能根据我们的实际需求灵活的使用内存空间.有些空间的大小在程序运行时才能知道,那数组的编译时开辟空间的方式就不能满足了,这时候就只有动态开辟内存 动态内存函数的介绍 malloc函数 void* malloc(size_t size); 这个函数的 作用是向内存申请一快连续可用的空间,并返回指向这块空间的指针. 如果开辟成功,则返回一个指

  • Python深入06——python的内存管理详解

    语言的内存管理是语言设计的一个重要方面.它是决定语言性能的重要因素.无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征.这里以Python语言为例子,说明一门动态类型的.面向对象的语言的内存管理方式. 对象的内存使用 赋值语句是语言最常见的功能了.但即使是最简单的赋值语句,也可以很有内涵.Python的赋值语句就很值得研究. a = 1 整数1为一个对象.而a是一个引用.利用赋值语句,引用a指向对象1.Python是动态类型的语言(参考动态类型),对象与引用分离.Python

随机推荐