用R语言实现霍夫曼编码的示例代码

可读性极低,而且其实也没必要用R语言写,图个乐罢了

p=c(0.4,0.2,0.2,0.1,0.1)###输入形如c(0.4,0.2,0.2,0.1,0.1)的概率向量,即每个待编码消息的发生概率
p1=p###将概率向量另存,最后计算编码效率要用
mazijuzhen=matrix(,nrow=length(p),ncol=length(p)-1)###码字矩阵:第i行对应向量p的第i个分量所对应的那个待编码消息的编码后的码字
group=matrix(c(1:length(p),rep(NA,length(p)*(length(p)-1))),nrow=length(p),ncol=length(p))###初始分组:每一行代表一组,每个行向量的所有分量代表此组的所有元素,初始时,有多少个待编码消息就分多少个组,每组只有一个待编码消息,以整数i代表向量p的第i个分量所对应的那个待编码消息
i=1###开始编码
for(i in 1:(length(p)-1))
{
 orderp=order(p,decreasing = FALSE)###orderp的分量依次是:p的最小分量的下标,p的第二小分量的下标。。。
 mazijuzhen[group[orderp[1],],i]=0###给概率最小的两个消息组编上0和1
 mazijuzhen[group[orderp[2],],i]=1
 group[min(c(orderp[1],orderp[2])),]=c(na.omit(group[min(c(orderp[1],orderp[2])),]),na.omit(group[max(c(orderp[1],orderp[2])),]),rep(NA,length(p)-length(c(na.omit(group[min(c(orderp[1],orderp[2])),]),na.omit(group[max(c(orderp[1],orderp[2])),])))))###把此次迭代的两个消息组中组编号较大的分到组编号较小的组里去。
 group[max(c(orderp[1],orderp[2])),]=NA###删除组编号较大的组
 p[min(c(orderp[1],orderp[2]))]=p[orderp[1]]+p[orderp[2]]###计算本次迭代得到的新的消息组的发生概率
 p[max(c(orderp[1],orderp[2]))]=NA###由于组编号较大的组被删除,所以相应删除它所对应的概率
 print("当前迭代次数")###本次迭代的结果总结
 print(i)
 print("概率向量")
 print(p)
 print("分组矩阵")
 print(group)
 print("码字矩阵")
 print(mazijuzhen)
}
i=1###由霍夫曼编码的特性,将所有编码倒转得到最终编码
for (i in 1:length(p))
{
 mazijuzhen[i,]=rev(mazijuzhen[i,])
}
i=1###构建码长向量
machang=c()
for (i in 1:length(p))
{

 machang=c(machang,length(na.omit(mazijuzhen[i,])))
}
xiaolv=-p1%*%log(p1,2)/mean(machang)###计算编码效率
print("最终的码字矩阵和编码效率")
mazijuzhen
xiaolv

到此这篇关于用R语言实现霍夫曼编码的示例代码的文章就介绍到这了,更多相关R语言 霍夫曼编码内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用C语言详解霍夫曼树数据结构

    1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,--,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 k1 到 kj 所经过的分支数称为这两点之间的路径长度,它等于路径上的结点数减1. b.结点的权和带权路径长度 在许多应用中,常常将树中的结点赋予一个有着某种意义的实数,我们称此实数为该结点的权,(如下面一个树中的蓝色数字表示结点的权) 结点的带权路径长度规定为从树根结点到该结点之间的路径长度与该结点上权的乘

  • 用R语言实现霍夫曼编码的示例代码

    可读性极低,而且其实也没必要用R语言写,图个乐罢了 p=c(0.4,0.2,0.2,0.1,0.1)###输入形如c(0.4,0.2,0.2,0.1,0.1)的概率向量,即每个待编码消息的发生概率 p1=p###将概率向量另存,最后计算编码效率要用 mazijuzhen=matrix(,nrow=length(p),ncol=length(p)-1)###码字矩阵:第i行对应向量p的第i个分量所对应的那个待编码消息的编码后的码字 group=matrix(c(1:length(p),rep(NA

  • C语言实现哈夫曼编码

    本文实例为大家分享了C语言实现哈夫曼编码的具体代码,供大家参考,具体内容如下 代码来自于<小甲鱼C++快速入门> 主程序main.cpp #include "stdafx.h" #include <stdlib.h> #include "huffman.h" int main() { htTree *codeTree = buildTree("I love wwwwwwwwwFishC.com!");//建立哈夫曼树 hl

  • java数据结构图论霍夫曼树及其编码示例详解

    目录 霍夫曼树 一.基本介绍 二.霍夫曼树几个重要概念和举例说明  构成霍夫曼树的步骤 霍夫曼编码 一.基本介绍 二.原理剖析 注意: 霍夫曼编码压缩文件注意事项 霍夫曼树 一.基本介绍 二.霍夫曼树几个重要概念和举例说明  构成霍夫曼树的步骤 举例:以arr = {1  3  6  7  8   13   29}  public class HuffmanTree { public static void main(String[] args) { int[] arr = { 13, 7, 8

  • C语言实现哈夫曼树

    本文实例为大家分享了C语言实现哈夫曼树的具体代码,供大家参考,具体内容如下 //哈夫曼树C语言实现 #include <stdio.h> #include <stdlib.h> typedef struct HuffmanNode { char letter;//存储的字符,叶节点为字母,非叶节点为# struct HuffmanNode *parent;//父亲结点 int code;//如果为父亲结点的左孩子,则为0,右孩子为1 }HuffmanNode; typedef st

  • 基于C语言利用哈夫曼树实现文件压缩的问题

    一.哈夫曼树 具有n个权值的n个叶子结点,构造出一个二叉树,使得该树的带权路径长度(WPL)最小,则称此二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree). 注意:哈夫曼树是带权路径长度最短的树,且权值越大的叶子结点离根结点越近. 二.哈夫曼编码         哈夫曼编码是一种编码方式,又称"霍夫曼编码",其是可变字长的编码(VCL)的一种,是由霍夫曼于1952年提出的一种编码方式,有时被称为最佳编码,一般称为Huffman编码. 那么我们为什么要使用哈夫曼编码进行压缩?

  • C语言实现哈夫曼树的方法

    本文实例为大家分享了C语言实现哈夫曼树的具体代码,供大家参考,具体内容如下 准备工作: 1.定义一个结构体,表示一个节点.其中,这个结构体有4个成员变量,分别表示是这个节点的权值,父节点及左右子节点的下标 2.定义一个整形数组,用于存放各个节点的权值 3.定义一个整形数组,用于存放哈夫曼编码,当然也可以定义一个整形数组来存放哈夫曼编码 构建哈夫曼树: 1.给这个哈夫曼树创建一个结构体数组,其中分配的空间是2 * n - 1,因为我们都知道哈夫曼树的性质有一个是:给定n个叶子节点,那么由这n个叶子

  • Java利用哈夫曼编码实现字符串压缩

    赫夫曼编码基本介绍 1) 赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式, 属于一种程序算法 2) 赫夫曼编码是赫哈夫曼树在电讯通信中的经典的应用之一. 3) 赫夫曼编码广泛地用于数据文件压缩.其压缩率通常在 20%-90%之间 4) 赫夫曼码是可变字长编码(VLC)的一种.Huffman 于 1952 年提出一种编码方法,称之为最佳编码 在通信领域中几种信息处理方式的区别(以字符串" i like like like java do you li

  • C++实现哈夫曼编码

    本文实例为大家分享了C++实现哈夫曼编码的具体代码,供大家参考,具体内容如下 #include<iostream> #include<string> #include<vector> #include<algorithm> using namespace std; int Max = 300; class tree{ public: char s; int num; tree *left; tree *right; tree(){ s= '!'; num =

  • 利用Python和C语言分别实现哈夫曼编码

    目录 1.C语言实现 1.1代码说明 1.2运行结果 2.Python实现 2.1代码说明 2.2运行结果 1.C语言实现 1.1代码说明 a  创建双向链表: 在创建哈夫曼树的过程中,需要不断对结点进行更改和删除,所以选用双向链表的结构更容易 '''C #include <stdlib.h> #include <stdio.h> #include <windows.h> //哈夫曼树结构体,数据域存储字符及其权重 typedef struct node { char

随机推荐