python光学仿真通过菲涅耳公式实现波动模型

从物理学的机制出发,波动模型相对于光线模型,显然更加接近光的本质;但是从物理学的发展来说,波动光学旨在解决几何光学无法解决的问题,可谓光线模型的一种升级。从编程的角度来说,波动光学在某些情况下可以简单地理解为在光线模型的基础上,引入一个相位项。

波动模型

一般来说,三个特征可以确定空间中的波场:频率、振幅和相位,故光波场可表示为:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
z = np.arange(15,200)*10    #单位为nm
x = np.arange(15,200)*10
x,z = np.meshgrid(x,z)      #创建坐标系
E = 1/np.sqrt(x**2+z**2)*np.cos(2*np.pi*np.sqrt(x**2+z**2)/(532*1e-9))
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(x,z,E)
plt.show()

其结果如图所示

菲涅耳公式

几何光学可以通过费马原理得到折射定律,但是无法获知光波的透过率,菲涅耳公式在几何光学的基础上,解决了这个问题。

由于光是一群横波的集合,故可以根据其电矢量的震动方向,将其分为平行入射面与垂直入射面的两个分量,分别用 p分量和 s 分量来表示。一束光在两介质交界处发生折射,两介质折射率分别为  n1​和  n2​,对于 p光来说,其电矢量平行于入射面,其磁矢量则垂直于入射面,即只有s分量;而对于 s光来说,则恰恰相反,如图所示。

则对于 p 光来说即

对于磁矢量而言,有

我们可以通过python绘制出当入射光的角度不同时,其振幅反射率和透过率的变化

import matplotlib.pyplot as plt
import numpy as np
def fresnel(theta, n1, n2):
    theta = theta*np.pi/180
    xTheta = np.cos(theta)
    mid = np.sqrt(1-(n1/n2*np.sin(theta))**2)          #中间变量
    rp = (n2*xTheta-n1*mid)/(n2*xTheta+n1*mid)  #p分量振幅反射率
    rs = (n1*xTheta-n2*mid)/(n1*xTheta+n2*mid)
    tp = 2*n1*xTheta/(n2*xTheta+n1*mid)
    ts = 2*n1*xTheta/(n1*xTheta+n2*mid)
    return rp, rs, tp, ts
def testFres(n1=1,n2=1.45):         #默认n2为1.45
    theta = np.arange(0,90,0.1)+0j
    a = theta*np.pi/180
    rp,rs,tp,ts = fresnel(theta,n1,n2)
    fig = plt.figure(1)
    plt.subplot(1,2,1)
    plt.plot(theta,rp,'-',label='rp')
    plt.plot(theta,rs,'-.',label='rs')
    plt.plot(theta,np.abs(rp),'--',label='|rp|')
    plt.plot(theta,np.abs(rs),':',label='|rs|')
    plt.legend()
    plt.subplot(1,2,2)
    plt.plot(theta,tp,'-',label='tp')
    plt.plot(theta,ts,'-.',label='ts')
    plt.plot(theta,np.abs(tp),'--',label='|tp|')
    plt.plot(theta,np.abs(ts),':',label='|ts|')
    plt.legend()
    plt.show()
if __init__=="__main__":
    testFres()

得到其图像为

通过python进行绘图,将上面程序中的testFres改为以下代码即可。

def testFres(n1=1,n2=1.45):
    theta = np.arange(0,90,0.1)+0j
    a = theta*np.pi/180
    rp,rs,tp,ts = fml.fresnel(theta,n1,n2)
    Rp = np.abs(rp)**2
    Rs = np.abs(rs)**2
    Rn = (Rp+Rs)/2
    Tp = n2*np.sqrt(1-(n1/n2*np.sin(a))**2)/(n1*np.cos(a))*np.abs(tp)**2
    Ts = n2*np.sqrt(1-(n1/n2*np.sin(a))**2)/(n1*np.cos(a))*np.abs(ts)**2
    Tn = (Tp+Ts)/2
    fig = plt.figure(2)
    plt.subplot(1,2,1)
    plt.plot(theta,Rp,'-',label='R_p')
    plt.plot(theta,Rs,'-.',label='R_s')
    plt.plot(theta,Rn,'-',label='R_n')
    plt.legend()
    plt.subplot(1,2,2)
    plt.plot(theta,Tp,'-',label='T_p')
    plt.plot(theta,Ts,'-.',label='T_s')
    plt.plot(theta,Tn,'--',label='T_n')
    plt.legend()
    plt.show()

以上就是python光学仿真通过菲涅耳公式实现波动模型的详细内容,更多关于实现波动模型的资料请关注我们其它相关文章!

(0)

相关推荐

  • python光学仿真实现光线追迹折射与反射的实现

    目录 折射与反射 平面反射 平面折射 python实现 弧面问题 折射与反射 光线与光学元件相互作用,无非只有两件事,反射和透射.而就目前看来,我们所常用的光学元件,也无非有两种表面,即平面和球面,二维化之后就简化成了射线与线段,射线与劣弧的关系. 平面反射 无论从哪个角度来看,平面的反射折射都要比球面更简单,而反射问题要比折射问题更简单,所以,我们首先处理平面的反射问题. 反射定律即入射角等于反射角,心念及此,最为循规蹈矩的思路必然是先找到入射光线和平面的夹角,然后用这个夹角和平面(在二维空间

  • python在openstreetmap地图上绘制路线图的实现

    利用python进行经纬度轨迹展示 嘿!各位好久不见,距离第一次发博客已经过去两年多了,本人也从本科生变成了研究生,好了书归正传,最近在做一个关于航班滑行路径轨迹的项目,目的是将航班的经纬度数据在地图上显现出来并生成一条路径,以方便日后的滑行路径优化与分析.本文所用的语言为python,使用的是folium包,数据在flightaware网站上可以找到,使用这个包之前还是需要先进行pip install folium folium的基本用法 folium.Map([纬度,经度],zoom sta

  • python光学仿真实现光线追迹之空间关系

    目录 空间关系 相交判定 射线排序 线弧关系 点弧关系 空间关系 变化始于相遇,所以交点是一切的核心. 相交判定 首先考察一束光线能否打在某个平面镜上.光线被抽象成了一个列表[a,b,c],平面镜则被抽象成为由两个点构成的线段[(x1,y1),(x2,y2)].两条直线的交点问题属于初等数学范畴,需要先将线段转换成直线的形式,然后再求交点.但是两条直线的交点可能落在线段的外面,从而不具有判定的意义. 如果我们的光学系统中有大量的光学元件,那么如果有一种方法可以快速判断光线是否与光学元件有交点,将

  • Python光学仿真教程实现光线追踪

    目录 光线追迹 几何抽象 光线 线段与圆弧 光线追迹 得益于计算机的计算的能力,通过追踪具有代表性的光线的传播轨迹,可以更加精确地描述光学系统的性能,光线追迹方法也因此大展其能,诸如Zemax.tracepro等软件便都提供了相应的功能. 而建立在折射定律基础之上的光线追迹方法,对数学功底要求较低,所以比较适合作为python初学者的入门项目.在接下来的这一章,希望通过对光线追迹的实现,掌握python中的列表.元组.字典.集合等数据类型的基本概念,并且对面向对象与函数式编程有一个基本的了解.

  • python光学仿真通过菲涅耳公式实现波动模型

    从物理学的机制出发,波动模型相对于光线模型,显然更加接近光的本质:但是从物理学的发展来说,波动光学旨在解决几何光学无法解决的问题,可谓光线模型的一种升级.从编程的角度来说,波动光学在某些情况下可以简单地理解为在光线模型的基础上,引入一个相位项. 波动模型 一般来说,三个特征可以确定空间中的波场:频率.振幅和相位,故光波场可表示为: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import

  • python光学仿真相速度和群速度计算理解学习

    目录 波动模型 相速度 群速度 从编程的角度来说,波动光学在某些情况下可以简单地理解为在光线模型的基础上,引入一个相位项. 波动模型 一般来说,三个特征可以确定空间中的波场:频率.振幅和相位,故光波场可表示为: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D z = np.arange(15,200)*10 #单位为nm x = np.arange(15,200)

  • python光学仿真面向对象光学元件类的实现

    光学元件类 平面反射镜是一种极为简单的模型,因为我们只需要考虑一个平面即可.但是除此之外的其他光学元件,可能会变得有些复杂:我们必须考虑光在入射面和出射面的行为. 这当然是一句废话,而且我们也有了一个初步的解决方案:将光学元件拆成前表面和后表面即可.如果光需要在光学元件中反射多次,那就将光学元件拆成需要反射次数的表面个数即可,完美而无脑. 这说明我们已经熟悉了程序员的思维,我们眼中的世界已经不再是一个所见即所得的世界,我们看到的是一个个抽象零部件的表现.但是也不要惊慌,程序员和正常人也未必有很大

  • Python光学仿真之对光的干涉理解学习

    光的干涉 干涉即两束光在叠加过程中出现的强度周期性变化情况,其最简单的案例即为杨氏双缝干涉. 如图所示,光从 S S S点发出,通过两个狭缝 S 1 , S 2 S_1,S_2 S1​,S2​,最终汇聚在右侧的干涉屏上,在不同位置处将会产生不同的相位差. import numpy as np import matplotlib.pyplot as plt #两束光叠加 waveAdd = lambda I1,I2,theta : I1+I2+2*np.sqrt(I1*I2)*np.cos(the

  • Python光学仿真wxpython透镜演示系统计算与绘图

    目录 计算与绘图 计算与绘图 这里的计算主要包括两个部分,分别是通过滚动条的参数得到光学器件的特征,这一点此前已经备述.其二则是光在传播过程中所产生的各种行为,反射折射函数也都已经讲过了,需要注意的就是确定边界. def getRay(self): self.rays,self.abcs,self.dots = [[],[],[]] sDot = self.source #光源为第一个点 sRay = rp.getABC(self.sourceDict['theta'],sDot) inPoin

  • Python光学仿真wxpython透镜演示系统初始化与参数调节

    初始化与参数调节面板 这一节将绘制出如下图所示的参数调节面板 对于上图来说,BoxSizer布局十分傻瓜,所以这里主要有两个方面需要注意,其一是opti和source这两个选项卡的实现,其二则是如何同时创建多个滚动条. 对于前者比较容易,无非是多用一个控件而已,即wx.NoteBook,使用方法乏善可陈,看代码即可学会. 对于后者当然也可以很容易,只要无脑罗列即可,只不过对于五个不同的参数就意味着要新建五组滚动条,要就要新建五个控制函数,而这五个控制函数的功能几乎是完全一样的.显然,这很愚蠢,所

  • Python光学仿真wxpython透镜演示系统框架

    透镜演示系统 框架 现在,我们可以做一个具备友好界面的透镜演示系统了.我们需要两个圆弧来表示透镜,一条线段表示主光轴,多条线段表示光线的传播路径.此外,还需要对光源和透镜的参数进行调节. 然而值得注意的一点是,我们在进行计算和画图过程中所用到的几何图形,在表达形式以及操作流程上可能并不相同.例如,对于光源发出的一条射线,它与透镜的作用流程为 寻找与透镜前表面的交点A 获取反射和透射直线 寻找透射直线与透镜后表面的交点B 计算透过透镜的直线 然而对于画图程序来说,光源S和A之间有一条线段,A和B之

随机推荐