Python如何使用神经网络进行简单文本分类

深度学习无处不在。在本文中,我们将使用Keras进行文本分类。

准备数据集

出于演示目的,我们将使用  20个新闻组  数据集。数据分为20个类别,我们的工作是预测这些类别。如下所示:

通常,对于深度学习,我们将划分训练和测试数据。

导入所需的软件包

Python

import pandas as pd
import numpy as np
import pickle
from keras.preprocessing.text import Tokenizer
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout
from sklearn.preprocessing import LabelBinarizer
import sklearn.datasets as skds
from pathlib import Path

将数据从文件加载到Python变量

Python

# 为了复现性

np.random.seed(1237)
  
label_index = files_train.target
label_names = files_train.target_names
labelled_files = files_train.filenames
 
data_tags = ["filename","category","news"]
data_list = []
 
# 读取文件中的数据并将其添加到列表

 
data = pd.DataFrame.from_records(data_list, columns=data_tags)

我们的数据无法以CSV格式提供。我们有文本数据文件,文件存放的目录是我们的标签或类别。

我们将使用scikit-learn load_files方法。这种方法可以提供原始数据以及标签和标签索引。

最后我们得到一个数据框,其中包含文件名,类别和实际数据。

拆分数据进行训练和测试

Python

# 让我们以80%的数据作为训练,剩下的20%作为测试。

train_size = int(len(data) * .8)
 
train_posts = data['news'][:train_size]
train_tags = data['category'][:train_size]
train_files_names = data['filename'][:train_size]
 
test_posts = data['news'][train_size:]
test_tags = data['category'][train_size:]
test_files_names = data['filename'][train_size:]

标记化并准备词汇

Python

# 20个新闻组

num_labels = 20
vocab_size = 15000
batch_size = 100
 
# 用Vocab Size定义Tokenizer

tokenizer = Tokenizer(num_words=vocab_size)
tokenizer.fit_on_texts(train_posts) 

在对文本进行分类时,我们首先使用Bag Of Words方法对文本进行预处理。

预处理输出标签/类

在将文本转换为数字向量后,我们还需要确保标签以神经网络模型接受的数字格式表示。

建立Keras模型并拟合

PowerShell

model = Sequential()

它为输入数据的维度以及构成模型的图层类型提供了简单的配置。

这是拟合度和测试准确性的代码段

100/8145 [..............................] - ETA: 31s - loss: 1.0746e-04 - acc: 1.0000
200/8145 [..............................] - ETA: 31s - loss: 0.0186 - acc: 0.9950    
300/8145 [>.............................] - ETA: 35s - loss: 0.0125 - acc: 0.9967
400/8145 [>.............................] - ETA: 32s - loss: 0.0094 - acc: 0.9975
500/8145 [>.............................] - ETA: 30s - loss: 0.0153 - acc: 0.9960
...
7900/8145 [============================>.] - ETA: 0s - loss: 0.1256 - acc: 0.9854
8000/8145 [============================>.] - ETA: 0s - loss: 0.1261 - acc: 0.9855
8100/8145 [============================>.] - ETA: 0s - loss: 0.1285 - acc: 0.9854
8145/8145 [==============================] - 29s 4ms/step - loss: 0.1293 - acc: 0.9854 - val_loss: 1.0597 - val_acc: 0.8742
 
Test accuracy: 0.8767123321648251

评估模型

Python

for i in range(10):
    prediction = model.predict(np.array([x_test[i]]))
    predicted_label = text_labels[np.argmax(prediction[0])]
    print(test_files_names.iloc[i])
    print('Actual label:' + test_tags.iloc[i])
    print("Predicted label: " + predicted_label)

在Fit方法训练了我们的数据集之后,我们将如上所述评估模型。

混淆矩阵

混淆矩阵是可视化模型准确性的最佳方法之一。

保存模型

通常,深度学习的用例就像在不同的会话中进行数据训练,而使用训练后的模型进行预测一样。

# 创建一个HDF5文件'my_model.h5'

model.model.save('my_model.h5')
 
# 保存令牌生成器,即词汇表

with open('tokenizer.pickle', 'wb') as handle:
    pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)

Keras没有任何实用程序方法可将Tokenizer与模型一起保存。我们必须单独序列化它。

加载Keras模型

Python

预测环境还需要注意标签。

encoder.classes_ #标签二值化

预测

如前所述,我们已经预留了一些文件进行实际测试。

Python

 labels = np.array(['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x',
'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space',
'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc'])
 ...
for x_t in x_tokenized:
    prediction = model.predict(np.array([x_t]))
    predicted_label = labels[np.argmax(prediction[0])]
    print("File ->", test_files[i], "Predicted label: " + predicted_label)
    i += 1

输出

File -> C:DL20news-bydate20news-bydate-testcomp.graphics38758 Predicted label: comp.graphics
File -> C:DL20news-bydate20news-bydate-testmisc.forsale76115 Predicted label: misc.forsale
File -> C:DL20news-bydate20news-bydate-testsoc.religion.christian21329 Predicted label: soc.religion.christian

我们知道目录名是文件的真实标签,因此上述预测是准确的。

结论

在本文中,我们使用Keras python库构建了一个简单而强大的神经网络。

以上就是Python如何使用神经网络进行简单文本分类的详细内容,更多关于python 神经网络进行文本分类的资料请关注我们其它相关文章!

(0)

相关推荐

  • 如何用Python 实现全连接神经网络(Multi-layer Perceptron)

    代码 import numpy as np # 各种激活函数及导数 def sigmoid(x): return 1 / (1 + np.exp(-x)) def dsigmoid(y): return y * (1 - y) def tanh(x): return np.tanh(x) def dtanh(y): return 1.0 - y ** 2 def relu(y): tmp = y.copy() tmp[tmp < 0] = 0 return tmp def drelu(x): t

  • Python创建简单的神经网络实例讲解

    在过去的几十年里,机器学习对世界产生了巨大的影响,而且它的普及程度似乎在不断增长.最近,越来越多的人已经熟悉了机器学习的子领域,如神经网络,这是由人类大脑启发的网络.在本文中,将介绍用于一个简单神经网络的 Python 代码,该神经网络对于一个 1x3 向量,分类第一个元素是否为 10. 步骤1: 导入 NumPy. Scikit-learn 和 Matplotlib import numpy as np from sklearn.preprocessing import MinMaxScale

  • Python使用循环神经网络解决文本分类问题的方法详解

    本文实例讲述了Python使用循环神经网络解决文本分类问题的方法.分享给大家供大家参考,具体如下: 1.概念 1.1.循环神经网络 循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络. 卷积网络的输入只有输入数据X,而循环神经网络除了输入数据X之外,每一步的输出会作为下一步的输入,如此循环,并且每一次采用相同的激活函数和参数.在每次循环中,x0乘以系数U得到s0,再经过系数W输入

  • python神经网络编程实现手写数字识别

    本文实例为大家分享了python实现手写数字识别的具体代码,供大家参考,具体内容如下 import numpy import scipy.special #import matplotlib.pyplot class neuralNetwork: def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes

  • Python利用全连接神经网络求解MNIST问题详解

    本文实例讲述了Python利用全连接神经网络求解MNIST问题.分享给大家供大家参考,具体如下: 1.单隐藏层神经网络 人类的神经元在树突接受刺激信息后,经过细胞体处理,判断如果达到阈值,则将信息传递给下一个神经元或输出.类似地,神经元模型在输入层输入特征值x之后,与权重w相乘求和再加上b,经过激活函数判断后传递给下一层隐藏层或输出层. 单神经元的模型只有一个求和节点(如左下图所示).全连接神经网络(Full Connected Networks)如右下图所示,中间层有多个神经元,并且每层的每个

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • 自适应线性神经网络Adaline的python实现详解

    自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络. 相对于感知器,采用了f(z)=z的激活函数,属于连续函数. 代价函数为LMS函数,最小均方算法,Least mean square. 实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的. ''' Adaline classifier created on 2019.9.14 author: vince ''' import pandas import math import numpy

  • python实现BP神经网络回归预测模型

    神经网络模型一般用来做分类,回归预测模型不常见,本文基于一个用来分类的BP神经网络,对它进行修改,实现了一个回归模型,用来做室内定位.模型主要变化是去掉了第三层的非线性转换,或者说把非线性激活函数Sigmoid换成f(x)=x函数.这样做的主要原因是Sigmoid函数的输出范围太小,在0-1之间,而回归模型的输出范围较大.模型修改如下: 代码如下: #coding: utf8 '''' author: Huangyuliang ''' import json import random impo

  • Python如何使用神经网络进行简单文本分类

    深度学习无处不在.在本文中,我们将使用Keras进行文本分类. 准备数据集 出于演示目的,我们将使用  20个新闻组  数据集.数据分为20个类别,我们的工作是预测这些类别.如下所示: 通常,对于深度学习,我们将划分训练和测试数据. 导入所需的软件包 Python import pandas as pd import numpy as np import pickle from keras.preprocessing.text import Tokenizer from keras.models

  • python基于Tkinter库实现简单文本编辑器实例

    本文实例讲述了python基于Tkinter库实现简单文本编辑器的方法.分享给大家供大家参考.具体实现方法如下: ## {{{ http://code.activestate.com/recipes/578568/ (r1) from Tkinter import * from tkSimpleDialog import askstring from tkFileDialog import asksaveasfilename from tkMessageBox import askokcance

  • python编写朴素贝叶斯用于文本分类

    朴素贝叶斯估计 朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法.首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 具体的,根据训练数据集,学习先验概率的极大似然估计分布 以及条件概率为 Xl表示第l个特征,由于特征条件独立的假设,可得 条件概率的极大似然估计为 根据贝叶斯定理 则由上式可以得到条件概率P(Y=ck|X=x). 贝叶斯估计 用极大似然估计可能会出现所估计的概率为0的情况.后影响到后验概率结果

  • Python通过朴素贝叶斯和LSTM分别实现新闻文本分类

    目录 一.项目背景 二.数据处理与分析 三.基于机器学习的文本分类–朴素贝叶斯 1. 模型介绍 2. 代码结构 3. 结果分析 四.基于深度学习的文本分类–LSTM 1. 模型介绍 2. 代码结构 3. 结果分析 五.小结 一.项目背景 本项目来源于天池⼤赛,利⽤机器学习和深度学习等知识,对新闻⽂本进⾏分类.⼀共有14个分类类别:财经.彩票.房产.股票.家居.教育.科技.社会.时尚.时政.体育.星座.游戏.娱乐. 最终将测试集的预测结果上传⾄⼤赛官⽹,可查看排名.评价标准为类别f1_score的

  • python简单文本处理的方法

    本文实例讲述了python简单文本处理的方法.分享给大家供大家参考.具体如下: 由于有多线程的影响,c++项目打印出来的时间顺序不一致,导致不太好在excel中统计,故使用python写了段脚本来解决之.涉及到如下方面 1. txt文本的读取,utf8的处理 2. 字符串的基本操作 3. dict的基本操作 4. list(数组)的基本操作 #!/usr/bin/python #print "Hello World" str_seperator = "============

  • python实现的简单文本类游戏实例

    本文实例讲述了python实现的简单文本类游戏实现方法.分享给大家供大家参考.具体实现方法如下: ############################################################ # - My version on the game "Dragon Realm". # - taken from the book "invent with python" by Al Sweigart. # - thanks for a grea

  • Python实现简单文本字符串处理的方法

    本文实例讲述了Python实现简单文本字符串处理的方法.分享给大家供大家参考,具体如下: 对于一个文本字符串,可以使用Python的string.split()方法将其切割.下面看看实际运行效果. mySent = 'This book is the best book on python!' print mySent.split() 输出: ['This', 'book', 'is', 'the', 'best', 'book', 'on', 'python!'] 可以看到,切分的效果不错,但

  • PyTorch上搭建简单神经网络实现回归和分类的示例

    本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一.PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可得到Linux下conda指令: conda install pytorch torchvision -c soumith 目前PyTorch仅支持MacOS和Linux,暂不支持Windows.安装 PyTorch 会安装两个模块,一个是torch,一个 torch

  • python使用RNN实现文本分类

    本文实例为大家分享了使用RNN进行文本分类,python代码实现,供大家参考,具体内容如下 1.本博客项目由来是oxford 的nlp 深度学习课程第三周作业,作业要求使用LSTM进行文本分类.和上一篇CNN文本分类类似,本此代码风格也是仿照sklearn风格,三步走形式(模型实体化,模型训练和模型预测)但因为训练时间较久不知道什么时候训练比较理想,因此在次基础上加入了继续训练的功能. 2.构造文本分类的rnn类,(保存文件为ClassifierRNN.py) 2.1 相应配置参数因为较为繁琐,

随机推荐