Python实现数据的序列化操作详解

目录
  • Json 模块
    • dumps()函数
    • dump()函数
    • loads()函数
    • load()函数
  • Pickle 模块
    • dumps()函数
    • dump()函数
    • loads()函数
    • load()函数
  • 总结

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:

  • json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;
  • json 是我们可以直观阅读的,而 pickle 不可以;
  • json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;
  • 默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的类;但 pickle 可以表示大量的 Python 数据类型。

Json 模块

Json 是一种轻量级的数据交换格式,由于其具有传输数据量小、数据格式易解析等特点,它被广泛应用于各系统之间的交互操作,作为一种数据格式传递数据。它包含多个常用函数,具体如下:

dumps()函数

dumps()函数可以将 Python 对象编码成 Json 字符串。例如:

#字典转成json字符串 加上ensure_ascii=False以后,可以识别中文, indent=4是间隔4个空格显示   

import json
d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},}
print(json.dumps(d,ensure_ascii=False,indent=4)) 

#执行结果:
{
    "小明": {
        "sex": "男",
        "addr": "上海",
        "age": 26
    },
    "小红": {
        "sex": "女",
        "addr": "上海",
        "age": 24
    }
}

dump()函数

dump()函数可以将 Python对象编码成 json 字符串,自动写入到文件中,不需要再单独写文件。例如:

#字典转成json字符串,不需要写文件,自动转成的json字符串写入到‘users.json'的文件中
import json
d={'小明':{'sex':'男','addr':'上海','age':26},'小红':{ 'sex':'女','addr':'上海', 'age':24},}
#打开一个名字为‘users.json'的空文件
fw =open('users.json','w',encoding='utf-8')

json.dump(d,fw,ensure_ascii=False,indent=4)

loads()函数

loads()函数可以将 json 字符串转换成 Python 的数据类型。例如:

#这是users.json文件中的内容
{
    "小明":{
        "sex":"男",
        "addr":"上海",
        "age":26
    },
    "小红":{
        "sex":"女",
        "addr":"上海",
        "age":24
    }
}

#!/usr/bin/python3
#把json串变成python的数据类型
import json
#打开‘users.json'的json文件
f =open('users.json','r',encoding='utf-8')
#读文件
res=f.read()
print(json.loads(res))   

#执行结果:
{'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}

load()函数

load()跟loads()功能相似,load()函数可以将 json 字符串转换成 Python 数据类型,不同的是前者的参数是一个文件对象,不需要再单独读此文件。例如:

#把json串变成python的数据类型:字典,传一个文件对象,不需要再单独读文件
import json
#打开文件
f =open('users.json','r',encoding='utf-8')
print(json.load(f))

#执行结果:
{'小明': {'sex': '男', 'addr': '上海', 'age': 26}, '小红': {'sex': '女', 'addr': '上海', 'age': 24}}

Pickle 模块

Pickle 模块与 Json 模块功能相似,也包含四个函数,即 dump()、dumps()、loads() 和 load(),它们的主要区别如下:

dumps 和 dump 的区别在于前者是将对象序列化,而后者是将对象序列化并保存到文件中。

loads 和 load 的区别在于前者是将序列化的字符串反序列化,而后者是将序列化的字符串从文件读取并反序列化。

dumps()函数

dumps()函数可以将数据通过特殊的形式转换为只有python语言认识的字符串,例如:

import pickle
# dumps功能
import pickle
data = ['A', 'B', 'C','D']
print(pickle.dumps(data))

b'\x80\x03]q\x00(X\x01\x00\x00\x00Aq\x01X\x01\x00\x00\x00Bq\x02X\x01\x00\x00\x00Cq\x03X\x01\x00\x00\x00Dq\x04e.'

dump()函数

dump()函数可以将数据通过特殊的形式转换为只有python语言认识的字符串,并写入文件。例如:

# dump功能
with open('test.txt', 'wb') as f:
    pickle.dump(data, f)
print('写入成功')

写入成功

loads()函数

loads()函数可以将pickle数据转换为python的数据结构。例如:

# loads功能
msg = pickle.loads(datastr)
print(msg)

['A', 'B', 'C', 'D']

load()函数

load()函数可以从数据文件中读取数据,并转换为python的数据结构。例如:

# load功能
with open('test.txt', 'rb') as f:
   data = pickle.load(f)
print(data)

['A', 'B', 'C', 'D']

总结

本节给大家介绍 Python 中 json&pickle 模块的常用操作,对于实现数据的序列化和反序列化提供了支撑。

到此这篇关于Python实现数据的序列化操作详解的文章就介绍到这了,更多相关Python数据序列化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python序列化与数据持久化实例详解

    本文实例讲述了python序列化与数据持久化.分享给大家供大家参考,具体如下: 数据持久化的方式有: 1.普通文件无格式写入:将数据直接写入到文件中 2.普通序列化写入:json,pickle 3.DBM方式:shelve,dbm 相关内容: json pickle shelve dbm json: 介绍: 按照指定格式[比如格式是字典,那么文件中就是字典]将数据明文写入到文件中,类型是bytes的,比如"中文"就会变成Unicode编码 用法: 首先要导入模块import json

  • Python数据序列化之pickle模块

    目录 1将Python数据存储为本地文件 ①存储过程 ②加载过程 2将Python数据存储为程序的一部分 ①存储过程 ②加载过程 前言: 在英语中 pickle 名词是泡菜,动词是腌渍的意思.可以理解为把东西腌起来保存成文件,要用的时候读出来洗洗再用. python的pickle模块实现了基本的数据序列化和反序列化. 序列化对象可以在磁盘上保存对象,并在需要的时候读取出来.任何对象都可以执行序列化操作. pickle的本质是将Python数据还原为内存中的二进制数据,供用户转移.储存. pick

  • Python如何把不同类型数据的json序列化

    现代网络应用Web APP或大型网站的后台一般只有一个,然后客户端却是各种各样的(iOS, android, 浏览器), 而且客户端的开发语言很可能与后台的开发语言不一样.这时我们需要后台能够提供可以跨平台跨语言的一种标准的数据交换格式供前后端沟通(这就是Web API的作用).如今大家最常用的跨平台跨语言数据交换格式就是JSON(JavaScript Object Notation)了.JSON是一种文本序列化格式(它输出的是unicode文件,大多数时候会被编码为utf-8),人们很容易进行

  • Python3.5 Json与pickle实现数据序列化与反序列化操作示例

    本文实例讲述了Python3.5 Json与pickle实现数据序列化与反序列化操作.分享给大家供大家参考,具体如下: 1.Json:不同语言之间进行数据交互. (1)JSON数据序列化:dumps() JSON数据是一种轻量级的数据交换格式,序列化:将内存数据对象变成字符串. #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import json info = { "name":"liu

  • Python之数据序列化(json、pickle、shelve)详解

    什么是序列化 什么是序列化,把程序中的对象或者变量,从内存中转换为可存储或可传输的过程称为序列化.在 Python 中,这个过程称为 pickling,在其他语言中也被称为 serialization,marshalling,flattening 等.程序中的对象(或者变量)在序列化之后,就可以直接存放到存储设备上,或者直接发送到网络上进行传输. 序列化的逆向过程,即为反序列化(unpickling),就是把序列化的对象(或者变量)重新读到内存中~ Python中序列化的模块 模块名称 描述 提

  • 详解Python之数据序列化(json、pickle、shelve)

    一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样.很多时候我们会有这样的需求: 把内存中的各种数据类型的数据通过网络传送给其它机器或客户端: 把内存中的各种数据类型的数据保存到本地磁盘持久化: 2.数据格式 如果要将一个系统内的数据通过网络传输给其它系统或客户端,我们通常都需要先把这些数据转化为字符串或字节串,而且需要规定一种统一的数据格式才能让数据接收端正确解析并理解这些数据的含义.XML 是早期被

  • Python实现数据的序列化操作详解

    目录 Json 模块 dumps()函数 dump()函数 loads()函数 load()函数 Pickle 模块 dumps()函数 dump()函数 loads()函数 load()函数 总结 ​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块.这两个模块主要区别如下: json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式: json 是我们可以直观阅读的,而 p

  • Python读写JSON文件的操作详解

    目录 JSON JSON 起源 JSON 样例 Python 原生支持 JSON 序列化 JSON 简单的序列化示例 JSON 反序列化 简单的反序列化示例 应用案例 编码和解码 JSON JSON 起源 JSON 全称 JavaScript Object Notation .是处理对象文字语法的 JavaScript 编程语言的一个子集.JSON 早已成为与语言无关的语言,并作为自己的标准存在. JSON 样例 { "data":[ { "id": "1

  • Python YAML文件的读写操作详解

    目录 YAML格式 YAML文件 YAML操作 读取 存储 示例 转字典 转列表 YAML是一种数据序列化格式,方便人类阅读,且容易和脚本语言交互.常用于配置文件,也用于数据存储或传输. YAML格式 YAML三种基本数据类型: 1.标量:如字符串.整数和浮点数.日期 布尔值:“true”.“True”.“TRUE”.“yes”.“Yes"和"YES”,“false”.“False”.“FALSE”.“no”.“No"和"NO” 空:null.Null.~或不指定值

  • Python Pandas学习之基本数据操作详解

    目录 1索引操作 1.1直接使用行列索引(先列后行) 1.2结合loc或者iloc使用索引 1.3使用ix组合索引 2赋值操作 3排序 3.1DataFrame排序 3.2Series排序 为了更好的理解这些基本操作,下面会通过读取一个股票数据,来进行Pandas基本数据操作的语法介绍. # 读取文件(读取保存文件后面会专门进行讲解,这里先直接调用下api) data = pd.read_csv("./data/stock_day.csv")  # 读取当前目录下一个csv文件 # 删

  • Python处理键映射值操作详解

    目录 1. 问题背景 2. collections 概述 2.1 什么是collections 2.2 Collections 内部结构 2.3 collections 使用方法 3. defaultdict 方法 setdefault(),对字典key值赋默认值 defaultdict(),对字典进行查找取值 4. Counter 方法 总结 作为一个学完Python基础知识的测试,暗喜终于可以像RD们自己写脚本处理任何场景吧,如何优雅地写出来代码,接下来开启进阶版的Python. 本期浅谈一

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • python数据类型_字符串常用操作(详解)

    这次主要介绍字符串常用操作方法及例子 1.python字符串 在python中声明一个字符串,通常有三种方法:在它的两边加上单引号.双引号或者三引号,如下: name = 'hello' name1 = "hello bei jing " name2 = '''hello shang hai haha''' python中的字符串一旦声明,是不能进行更改的,如下: #字符串为不可变变量,即不能通过对某一位置重新赋值改变内容 name = 'hello' name[0] = 'k' #通

  • Python学习之字符串常用操作详解

    目录 1.查找字符串 2.分割字符串 3.连接字符串 4.替换字符串 5.移除字符串的首尾字符 6.转换字符串的大小写 7.检测字符串(后续还会更新) 1.查找字符串 除了使用index()方法在字符串中查找指定元素,还可以使用find()方法在一个较长的字符串中查找子串.如果找到子串,返回子串所在位置的最左端索引,否则返回-1. 语法格式: str.find(sub[,start[,end]]) 其中,str表示被查找的字符串.sub表示查找的子串.start表示开始索引,缺省时为0.end表

  • python数据分析数据标准化及离散化详解

    本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下 标准化 1.离差标准化 是对原始数据的线性变换,使结果映射到[0,1]区间.方便数据的处理.消除单位影响及变异大小因素影响. 基本公式为: x'=(x-min)/(max-min) 代码: #!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplo

  • Python开发SQLite3数据库相关操作详解【连接,查询,插入,更新,删除,关闭等】

    本文实例讲述了Python开发SQLite3数据库相关操作.分享给大家供大家参考,具体如下: '''SQLite数据库是一款非常小巧的嵌入式开源数据库软件,也就是说 没有独立的维护进程,所有的维护都来自于程序本身. 在python中,使用sqlite3创建数据库的连接,当我们指定的数据库文件不存在的时候 连接对象会自动创建数据库文件:如果数据库文件已经存在,则连接对象不会再创建 数据库文件,而是直接打开该数据库文件. 连接对象可以是硬盘上面的数据库文件,也可以是建立在内存中的,在内存中的数据库

随机推荐