python 基于opencv实现高斯平滑

假设一个列数为W,行数为H的高斯卷计算子gaussKernel,其中W,H均为奇数,描点位置在((H-1)/2 ,(W-1)/2),构建高斯卷积核的步骤如下

1.计算高斯矩阵

2.计算高斯矩阵的和

3.高斯矩阵除以其本身的和,也就是归一化

下面利用Python来实现构建高斯卷积算子

def getGaussKernel(sigma, H, W):
  r, c = np.mgrid[0:H:1, 0:W:1]
  r -= (H - 1) / 2
  c -= (W - 1) / 2
  gaussMatrix = np.exp(-0.5 * (np.power(r) + np.power(c)) / math.pow(sigma, 2))
  # 计算高斯矩阵的和
  sunGM = np.sum(gaussMatrix)
  # 归一化
  gaussKernel = gaussMatrix / sunGM
  return gaussKernel

高斯卷积核可以分离成一维水平方向上的高斯核和一维垂直方向上的高斯核,在OpenCV中给出了构建一维垂直方向上的高斯卷积核的函数:
Mat getGaussianKernel(int ksize, double sigma, in ktype = CV/_64F)

参数 释意
ksize 一维垂直方向上的高斯核行数,正奇数
sigma 标准差
ktype 返回值的数据类型为CV_32F或CV_64F,默认是CV_64F

下面通过Python代码来具体的实现图像的高斯平滑,我们首先会对图像水平方向进行卷积,然后再对垂直方向进行卷积,其中sigma代表高斯卷积核的标准差

def gaussBlur(image,sigma,H,W,_boundary = 'fill', _fillvalue = 0):
  #水平方向上的高斯卷积核
  gaussKenrnel_x = cv2.getGaussianKernel(sigma,W,cv2.CV_64F)
  #进行转置
  gaussKenrnel_x = np.transpose(gaussKenrnel_x)
  #图像矩阵与水平高斯核卷积
  gaussBlur_x = signal.convolve2d(image,gaussKenrnel_x,mode='same',boundary=_boundary,fillvalue=_fillvalue)
  #构建垂直方向上的卷积核
  gaussKenrnel_y = cv2.getGaussianKernel(sigma,H,cv2.CV_64F)
  #图像与垂直方向上的高斯核卷积核
  gaussBlur_xy = signal.convolve2d(gaussBlur_x,gaussKenrnel_y,mode='same',boundary= _boundary,fillvalue=_fillvalue)
  return gaussBlur_xy
if __name__ == "__main__":
  image = cv2.imread("../images/timg.jpg", cv2.IMREAD_GRAYSCALE)
  cv2.imshow("image",image)
  #高斯平滑
  blurImage = gaussBlur(image, 5, 400, 400, 'symm')
  #对bIurImage进行灰度级显示
  blurImage = np.round(blurImage)
  blurImage = blurImage.astype(np.uint8)
  cv2.imshow("GaussBlur", blurImage)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

运行截图:

以上就是python 基于opencv实现高斯平滑的详细内容,更多关于python 高斯平滑的资料请关注我们其它相关文章!

(0)

相关推荐

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

  • 基于python的opencv图像处理实现对斑马线的检测示例

    基本思路 斑马线检测通过opencv图像处理来进行灰度值转换.高斯滤波去噪.阈值处理.腐蚀和膨胀后对图像进行轮廓检测,通过判断车辆和行人的位置,以及他们之间的距离信息,当车速到超过一定阈值时并且与行人距离较近时,则会被判定车辆为未礼让行人. 结果示例 实验流程 先通过视频截取一张图片来进行测试,如果结果满意之后再嵌套到视频中,从而达到想要的效果. 1.预处理(灰度值转换.高斯滤波去噪.阈值处理.腐蚀和膨胀)> 根据自己的需求来修改一些值 #灰度值转换 imgGray = cv2.cvtColor

  • python 用opencv实现图像修复和图像金字塔

    我们将学习如何通过一种称为修复的方法去除旧照片中的小噪音,笔画等.基本思路很简单:用相邻像素替换那些坏标记,使其看起来像邻域. cv2.inpaint() cv2.INPAINT_TELEA cv2.INPAINT_NS import numpy as np import cv2 as cv img = cv.imread('messi_2.jpg') mask = cv.imread('mask2.png',0) dst = cv.inpaint(img,mask,3,cv.INPAINT_T

  • python openCV自制绘画板

    本文实例为大家分享了python openCV自制绘画板的具体代码,供大家参考,具体内容如下 import numpy as np import cv2 def nothing(x): pass cv2.namedWindow('image') img = np.zeros((512,512,3),np.uint8) cv2.createTrackbar('R','image',0,255,nothing) cv2.createTrackbar('G','image',0,255,nothing

  • python 基于opencv 实现一个鼠标绘图小程序

    需求 在画布上用鼠标画图,可以画圆或矩形,按m键在两种模式下切换.左键按下时开始画图,移动到哪儿画到哪儿,左键释放时结束画图. 实现思想 用鼠标画图:需要定义鼠标的回调函数mouse_event 画圆或矩形:需要定义一个画图的模式mode 左键单击.移动.释放:需要捕获三个不同的事件 开始画图,结束画图:需要定义一个画图的标记位drawing 实现代码 import cv2 as cv import numpy as np drawing = False # 是否开始画图 mode = True

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

  • Python+Opencv实现把图片、视频互转的示例

    1. 安装Opencv包 pip install opvencv-python 2.实现代码: 视频转为图片: import cv2 cap=cv2.VideoCapture('E:/video/video-02.mp4') # 获取一个视频打开cap isOpened=cap.isOpened # 判断是否打开 print(isOpened) fps=cap.get(cv2.CAP_PROP_FPS) print(fps) # 获取宽度 width=int(cap.get(cv2.CAP_PR

  • Python+OpenCV检测灯光亮点的实现方法

    本篇博文分享一篇寻找图像中灯光亮点(图像中最亮点)的教程,例如,检测图像中五个灯光的亮点并标记,项目效果如下所示: 第1步:导入并打开原图像,实现代码如下所示: # import the necessary packages from imutils import contours from skimage import measure import numpy as np import argparse import imutils import cv2 # construct the arg

  • python利用opencv保存、播放视频

    代码已上传至:https://gitee.com/tqbx/python-opencv/tree/master/Getting_started_videos 目标 学习读取视频,播放视频,保存视频. 学习从相机中捕捉帧并展示. 学习cv2.VideoCapture(),cv2.VideoWriter()的使用 从相机中捕捉视频 通过自带摄像头捕捉视频,并将其转化为灰度视频显示出来. 基本步骤如下: 1.首先创建一个VideoCapture对象,它的参数包含两种: 设备索引,指定摄像机的编号. 视

  • python+opencv实现高斯平滑滤波

    功能: 创建两个滑动条来分别控制高斯核的size和σσ的大小,这个程序是在阈值分割的那个程序上改动的.阈值分割程序在这 注意:由于σ=0σ=0时,opencv会根据窗口大小计算出σσ,所以,从0滑动σσ的滑动条时,会出现先边清晰又变模糊的现象 python+opencv实现阈值分割 python+opencv实现霍夫变换检测直线 (2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载 代码: # -*- coding: utf-8 -*-

随机推荐