python实现图像外边界跟踪操作

share一些python实现的code

#!/usr/bin/env python
#coding=utf-8

import cv2

img = cv2.imread("trace_border2.bmp")
[img_h, img_w, img_channel] = img.shape

trace = []
start_x = 0
start_y = 0

gray = img[:,:,1]
for h in range(img_h):
  for w in range(img_w):
    if (gray[h,w] > 128):
      gray[h,w] = 255
    else:
      gray[h,w] = 0

#python 跳出多重循环
#https://www.cnblogs.com/xiaojiayu/p/5195316.html
class getoutofloop(Exception): pass
try:
  for h in range(img_h - 2):
    for w in range(img_w - 2):
      if gray[h,w] == 0:
        start_x = w
        start_y = h
        raise getoutofloop
except getoutofloop:
  pass

print("Start Point (%d %d)"%(start_x, start_y))
trace.append([start_x, start_y])

# 8邻域 顺时针方向搜索
neighbor = [[-1,-1],[0,-1],[1,-1],[1,0],[1,1],[0,1],[-1,1],[-1,0]]
neighbor_len = len(neighbor)

#先从当前点的左上方开始,
# 如果左上方也是黑点(边界点):
#     搜索方向逆时针旋转90 i-=2
# 否则:
#     搜索方向顺时针旋转45 i+=1
i = 0
cur_x = start_x + neighbor[i][0]
cur_y = start_y + neighbor[i][1]

is_contour_point = 0

try:
  while not ((cur_x == start_x) and (cur_y == start_y)):
    is_contour_point = 0
    while is_contour_point == 0:
      #neighbor_x = cur_x +
      if gray[cur_y, cur_x] == 0:
        is_contour_point = 1
        trace.append([cur_x, cur_y])
        i -= 2
        if i < 0:
          i += neighbor_len
      else:
        i += 1
        if i >= neighbor_len:
          i -= neighbor_len
      #print(i)
      cur_x = cur_x + neighbor[i][0]
      cur_y = cur_y + neighbor[i][1]
except:
  print("throw error")

for i in range(len(trace)-1):
  cv2.line(img,(trace[i][0],trace[i][1]), (trace[i+1][0], trace[i+1][1]),(0,0,255),3)
  cv2.imshow("img", img)
  cv2.waitKey(10)

cv2.rectangle(img,(start_x, start_y),(start_x + 20, start_y + 20),(255,0,0),2)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyWindow("img")

搜索过程,红色标记线如下:

补充知识:python实现目标跟踪(opencv)

1.单目标跟踪

import cv2
import sys

(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
print(major_ver, minor_ver, subminor_ver)

if __name__ == '__main__':
  # 创建跟踪器
  tracker_type = 'MIL'
  tracker = cv2.TrackerMIL_create()
  # 读入视频
  video = cv2.VideoCapture("./data/1.mp4")
  # 读入第一帧
  ok, frame = video.read()
  if not ok:
    print('Cannot read video file')
    sys.exit()
  # 定义一个bounding box
  bbox = (287, 23, 86, 320)
  bbox = cv2.selectROI(frame, False)
  # 用第一帧初始化
  ok = tracker.init(frame, bbox)

  while True:
    ok, frame = video.read()
    if not ok:
      break
    # Start timer
    timer = cv2.getTickCount()
    # Update tracker
    ok, bbox = tracker.update(frame)
    # Cakculate FPS
    fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer)
    # Draw bonding box
    if ok:
      p1 = (int(bbox[0]), int(bbox[1]))
      p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
      cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
    else:
      cv2.putText(frame, "Tracking failed detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
    # 展示tracker类型
    cv2.putText(frame, tracker_type+"Tracker", (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2)
    # 展示FPS
    cv2.putText(frame, "FPS:"+str(fps), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2)
    # Result
    cv2.imshow("Tracking", frame)

    # Exit
    k = cv2.waitKey(1) & 0xff
    if k ==27 : break

2.多目标跟踪

使用GOTURN作为跟踪器时,须将goturn.caffemodel和goturn.prototxt放到工作目录才能运行,解决问题链接https://stackoverflow.com/questions/48802603/getting-deep-learning-tracker-goturn-to-run-opencv-python

import cv2
import sys

(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
print(major_ver, minor_ver, subminor_ver)

if __name__ == '__main__':
  # 创建跟踪器
  # 'BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE'
  tracker_type = 'MIL'
  tracker = cv2.MultiTracker_create()
  # 创建窗口
  cv2.namedWindow("Tracking")
  # 读入视频
  video = cv2.VideoCapture("./data/1.mp4")
  # 读入第一帧
  ok, frame = video.read()
  if not ok:
    print('Cannot read video file')
    sys.exit()
  # 定义一个bounding box
  box1 = cv2.selectROI("Tracking", frame)
  box2 = cv2.selectROI("Tracking", frame)
  box3 = cv2.selectROI("Tracking", frame)
  # 用第一帧初始化
  ok = tracker.add(cv2.TrackerMIL_create(), frame, box1)
  ok1 = tracker.add(cv2.TrackerMIL_create(), frame, box2)
  ok2 = tracker.add(cv2.TrackerMIL_create(), frame, box3)
  while True:
    ok, frame = video.read()
    if not ok:
      break
    # Start timer
    timer = cv2.getTickCount()
    # Update tracker
    ok, boxes = tracker.update(frame)
    print(ok, boxes)
    # Cakculate FPS
    fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer)
    for box in boxes:
      # Draw bonding box
      if ok:
        p1 = (int(box[0]), int(box[1]))
        p2 = (int(box[0] + box[2]), int(box[1] + box[3]))
        cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1)
      else:
        cv2.putText(frame, "Tracking failed detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255),2)
    # 展示tracker类型
    cv2.putText(frame, tracker_type+"Tracker", (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2)
    # 展示FPS
    cv2.putText(frame, "FPS:"+str(fps), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2)
    # Result
    cv2.imshow("Tracking", frame)

    # Exit
    k = cv2.waitKey(1) & 0xff
    if k ==27 : break

以上这篇python实现图像外边界跟踪操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • python实现图像外边界跟踪操作

    share一些python实现的code #!/usr/bin/env python #coding=utf-8 import cv2 img = cv2.imread("trace_border2.bmp") [img_h, img_w, img_channel] = img.shape trace = [] start_x = 0 start_y = 0 gray = img[:,:,1] for h in range(img_h): for w in range(img_w):

  • Python Opencv 通过轨迹(跟踪)栏实现更改整张图像的背景颜色

    !!!本博客,是对图像的背景颜色的修改的基础讲解~!!! 还包括一个练习--是对背景色修改的一点应用尝试!!!--始终相信学习多一点探索,脚步会更坚定一些~ 愿所有正在努力的人都可以坚持自己的路一直走下去! 实现轨迹(跟踪)栏功能的函数 函数主要参数讲解 cv.createTrackbar()--创建一个轨迹(跟踪)栏 cv.getTrackbarPos()--获取一个轨迹(跟踪)栏的值 cv.createTrackbar()参数如下: 参数一:trackbarname--轨迹(跟踪)栏名称 参

  • Python图像滤波处理操作示例【基于ImageFilter类】

    本文实例讲述了Python图像滤波处理操作.分享给大家供大家参考,具体如下: 在图像处理中,经常需要对图像进行平滑.锐化.边界增强等滤波处理.在使用PIL图像处理库时,我们通过Image类中的成员函数filter()来调用滤波函数对图像进行滤波,而滤波函数则通过ImageFilter类来定义的. 下面先直接看一个样例: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageFilter def image_filter

  • Python通过VGG16模型实现图像风格转换操作详解

    本文实例讲述了Python通过VGG16模型实现图像风格转换操作.分享给大家供大家参考,具体如下: 1.图像的风格转化 卷积网络每一层的激活值可以看作一个分类器,多个分类器组成了图像在这一层的抽象表示,而且层数越深,越抽象 内容特征:图片中存在的具体元素,图像输入到CNN后在某一层的激活值 风格特征:绘制图片元素的风格,各个内容之间的共性,图像在CNN网络某一层激活值之间的关联 风格转换:在一幅图片内容特征的基础上添加另一幅图片的风格特征从而生成一幅新的图片.在卷积模型训练中,通过输入固定的图片

  • 用python按照图像灰度值统计并筛选图片的操作(PIL,shutil,os)

    我就废话不多说了,大家还是直接看代码吧! import PIL.Image import numpy import os import shutil def sum_right(path): img = PIL.Image.open(path) array = numpy.array(img) num = array.sum(axis=0) print(type(num)) res_left = 0 res_right = 0 for i in range(256,512): res_right

  • Python OpenCV对图像像素进行操作

    目录 遍历并修改图像像素值 图像的加减乘除运算 遍历并修改图像像素值 在使用opencv处理图像时,有时需要对图像的每个像素点进行处理,比如取反.修改值等操作,就需要通过h和w遍历像素.依然以下图为例: 具体代码: import cv2 as cv import numpy as np def image_pixel(image_path: str): img = cv.imread(image_path, cv.IMREAD_COLOR) cv.imshow('input', img) h,

  • Python常用图像形态学操作详解

    目录 腐蚀 膨胀 开运算与闭运算 开运算 闭运算 梯度运算 礼帽与黑帽 礼帽 黑帽 腐蚀 在一些图像中,会有一些异常的部分,比如这样的毛刺: 对于这样的情况,我们就可以应用复式操作了.需要注意的是,腐蚀操作只能处理二值图像,即像素矩阵的值只有0(黑色)和255(白色).我们先看看代码和效果: import cv2 import numpy as np img = cv2.imread('dagongren.png') # 腐蚀的代码 kernel = np.ones((3,3),np.uint8

  • python OpenCV图像金字塔

    目录 1.图像金字塔理论基础 2.向下取样函数及使用 3.向上取样函数及使用 4.采样可逆性研究 5.拉普拉斯金字塔 6.图像轮廓介绍 轮廓近似 1.图像金字塔理论基础 图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构.一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合.其通过梯次向下采样获得,直到达到某个终止条件才停止采样.我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低.那我们为什么要做图像金字塔呢?这

  • Python数据报表之Excel操作模块用法分析

    本文实例讲述了Python数据报表之Excel操作模块用法.分享给大家供大家参考,具体如下: 一 点睛 Excel是当今最流行的电子表格处理软件,支持丰富的计算函数及图表,在系统运营方面广泛用于运营数据报表,比如业务质量.资源利用.安全扫描等报表,同时也是应用系统常见的文件导出格式,以便数据使用人员做进一步加工处理.利用Python操作Excel的模块XlsxWriter(https://xlsxwriter.readthedocs.org),可以操作多个工作表的文字.数字.公式.图表等. 二

  • Python Image模块基本图像处理操作小结

    本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa

随机推荐