C++ 实现LRU 与 LFU 的缓存算法

目录
  • 一、LRU (Least Recently Used) 缓存
  • 二、LFU (Least Frequently Used) 缓存

一、LRU (Least Recently Used) 缓存

详见 LeetCode Q146

https:// leetcode.com/problems/l ru-cache/

https:// leetcode-cn.com/problem s/lru-cache/

问题描述:

  1. LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
  2. int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  3. void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
  4. O(1) 时间复杂度内完成这两种操作

所用数据结构:

为了使 get put 操作的平均时间复杂度为 O(1)

使用双向链表 (STL list ) 储存缓存内容 (使用 STL pair {key, value} 表示),
使用哈希表 (STL unordered_map ) 储存 “key” 到 “pair iterator ” 的关系映射

typedef std::unordered_map<int, std::list<std::pair<int, int> >::iterator > CacheMap;
typedef std::list<std::pair<int, int> > LRUList;

流程图:

  • get function

  • put function

代码实现:

#include <iostream>
#include <list>
#include <unordered_map>

typedef std::unordered_map<int, std::list<std::pair<int, int> >::iterator > CacheMap;
typedef std::list<std::pair<int, int> > LRUList;

class LRUCache {
public:
    LRUCache(int capacity) {
        _capacity = capacity;
    }

    int get(int key) {
        CacheMap::iterator cache_itr = _cacheMap.find(key);
        if (cache_itr == _cacheMap.end() ) {
            return -1;
        }
        makeMostRecent(key, _cacheMap[key]->second);
        LRUList::iterator list_itr = _LRUList.end();
        --list_itr;
        return list_itr->second;
    }

    void put(int key, int value) {
        if (_cacheMap.find(key) != _cacheMap.end()) {
            makeMostRecent(key, value);
            return;
        }
        if (_LRUList.size() >= _capacity) {
            removeLeastRecentTask(key);
        }
        addMostRecentTask(key, value);
    }

private:
    void makeMostRecent(int key, int value) {
        _LRUList.erase(_cacheMap[key]);
        _LRUList.push_back(std::make_pair(key, value) );
        LRUList::iterator list_itr = _LRUList.end();
        _cacheMap[key] = --list_itr;
    }

    void removeLeastRecentTask(int key) {
        int keyToRemove = _LRUList.begin()->first;
        _LRUList.erase(_LRUList.begin());
        _cacheMap.erase(keyToRemove);
    }

    void addMostRecentTask(int key, int value) {
        _LRUList.push_back(std::make_pair(key, value) );
        LRUList::iterator list_itr = _LRUList.end();
        _cacheMap[key] = --list_itr;
    }

    int _capacity;
    LRUList _LRUList;
    CacheMap _cacheMap;
};

// n = item number of the LRU list, aka capacity
// Time: O(1)
// Space: O(n)

运行测试:

Accepted
22/22 cases passed (412 ms)
Your runtime beats 69.45 % of cpp submissions
Your memory usage beats 48.08 % of cpp submissions (174 MB)

二、LFU (Least Frequently Used) 缓存

详见 LeetCode Q460

https:// leetcode.com/problems/l fu-cache/

https:// leetcode-cn.com/problem s/lru-cache/

问题描述:

  1. LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  2. int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1 。
  3. void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用的键。
  4. 「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。
  5. 为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
  6. 当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。

所用数据结构:

为了使 get put 操作的平均时间复杂度为 O(1) ,

  1. 使用哈希表 (STL unordered_map ) 储存 “key” 到 “value frequency” 的关系映射 (使用 STL pair {value, frequency} 表示)
  2. 使用哈希表 (STL unordered_map ) 储存 “frequency” 到 “对应所有的 key” 的关系映射 (key 使用双向链表,即 STL list 存储)
  3. 使用哈希表 (STL unordered_map ) 储存 “key” 到 “2 中存储 key 所用 list 中对应 iterator ” 的关系映射
std::unordered_map<int, std::pair<int, int> > _keyToValFreq;
std::unordered_map<int, std::list<int> > _freqToKeyList;
std::unordered_map<int, std::list<int>::iterator> _keyToKeyListItr;

流程图:

  • get function

  • put function

代码实现:

#include <iostream>
#include <list>
#include <unordered_map>

class LFUCache {
public:
    LFUCache(int capacity) {
        _capacity = capacity;
    }

    int get(int key) {
        // If key doesn't exist
        if (_keyToValFreq.find(key) == _keyToValFreq.end() ) {
            return -1;
        }
        // if key exists, increse frequency and reorder
        increaseFreq(key);
        return _keyToValFreq[key].first;
    }

    void put(int key, int value) {
        if (_capacity <= 0) { return; }
        // if key exists
        if (_keyToValFreq.find(key) != _keyToValFreq.end() ) {
            _keyToValFreq[key].first = value;
            increaseFreq(key);
            return;
        }
        // if key doesn't exist
        // if reached hashmap's max capacity, remove the LFU (LRU if tie)
        if (_keyToValFreq.size() >= _capacity) {
            int keyToRmove = _freqToKeyList[_minFreq].back();
            _freqToKeyList[_minFreq].pop_back();
            _keyToKeyListItr.erase(keyToRmove);
            _keyToValFreq.erase(keyToRmove);
        }
        // Then add new item with frequency = 1
        addNewTask(key, value);
    }

    void increaseFreq(int key) {
        // Update the freq in the pair
        int oldFreq = _keyToValFreq[key].second++;

        // Detele the old freq by itr
        _freqToKeyList[oldFreq].erase(_keyToKeyListItr[key]);
        // Add the new freq and re-assign the itr
        _freqToKeyList[oldFreq + 1].emplace_front(key);
        _keyToKeyListItr[key] = _freqToKeyList[oldFreq + 1].begin();

        // Update minFreq
        if (_freqToKeyList[_minFreq].empty() ) {
            _minFreq = oldFreq + 1;
        }
    }

    void addNewTask(int key, int value) {
        // Add new key-value/freq to all hashmaps
        _minFreq = 1;
        _keyToValFreq[key] = std::make_pair(value, _minFreq);
        _freqToKeyList[_minFreq].emplace_front(key);
        _keyToKeyListItr[key] = _freqToKeyList[_minFreq].begin();
    }

private:
    int _capacity;
    int _minFreq;
    std::unordered_map<int, std::pair<int, int> > _keyToValFreq;
    std::unordered_map<int, std::list<int> > _freqToKeyList;
    std::unordered_map<int, std::list<int>::iterator> _keyToKeyListItr;
};

// n = item number of the LFU, aka capacity
// Time: O(1)
// Space: O(n)

运行测试:

Accepted
24/24 cases passed (464 ms)
Your runtime beats 72.37 % of cpp submissions
Your memory usage beats 45.99 % of cpp submissions (186.7 MB)

到此这篇关于C++ 实现LRU 与 LFU 的缓存算法的文章就介绍到这了,更多相关C++ 实现LRU 与 LFU 缓存算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++数据结构与算法之双缓存队列实现方法详解

    本文实例讲述了C++数据结构与算法之双缓存队列实现方法.分享给大家供大家参考,具体如下: "双缓存队列"是我在一次开发任务中针对特殊场景设计出来的结构.使用场景为:发送端持续向接收端发送数据包--并且不理会接收端是否完成业务逻辑.由于接收端在任何情况下停止响应即可能产生数据丢失,因此无法简单的设计一条线程安全队列来对数据写入或读取(读取数据时将队列上锁视为对写入的停止响应). 鉴于此,我的设计思路如下: 接收端首先向A队列中写入数据,然后当数据处理请求到来的时候切换到B队列继续写入,之

  • c++实现的常见缓存算法和LRU

    前言 对于web开发而言,缓存必不可少,也是提高性能最常用的方式.无论是浏览器缓存(如果是chrome浏览器,可以通过chrome:://cache查看),还是服务端的缓存(通过memcached或者redis等内存数据库).缓存不仅可以加速用户的访问,同时也可以降低服务器的负载和压力.那么,了解常见的缓存淘汰算法的策略和原理就显得特别重要. 常见的缓存算法 LRU (Least recently used) 最近最少使用,如果数据最近被访问过,那么将来被访问的几率也更高. LFU (Least

  • C++开发在IOS环境下运行的LRUCache缓存功能

    本文着重介绍如何在XCODE中,通过C++开发在IOS环境下运行的缓存功能.算法基于LRU(最近最少使用).有关lru详见: http://en.wikipedia.org/wiki/Page_replacement_algorithm#Least_recently_used 之前在网上看到过网友的一个C++实现,感觉不错,所以核心代码就采用了他的设计.原作者通过两个MAP对象来记录缓存数据和LRU队列,注意其中的LRU队列并不是按照常用的方式使用LIST链表,而是使用MAP来代替LIST,有关

  • C++实现LeetCode(146.近最少使用页面置换缓存器)

    [LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器 Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. get(key) - Get the value (will always be positive) of the key if the key exist

  • C++ 实现LRU 与 LFU 的缓存算法

    目录 一.LRU (Least Recently Used) 缓存 二.LFU (Least Frequently Used) 缓存 一.LRU (Least Recently Used) 缓存 详见 LeetCode Q146 https:// leetcode.com/problems/l ru-cache/ https:// leetcode-cn.com/problem s/lru-cache/ 问题描述: LRUCache(int capacity) 以正整数作为容量 capacity

  • LRU LFU TinyLFU缓存算法实例详解

    目录 简介 一.LRU和LFU算法 LRU算法 LFU算法 小结: 二.TinyLFU 三.Window-TinyLFU 简介 前置知识 知道什么是缓存 听完本节公开课,你可以收获 掌握朴素LRU.LFU算法的思想以及源码 掌握一种流式计数的算法 Count-Min Sketch 手撕TinyLFU算法.分析Window-TinyLFU源码 一.LRU和LFU算法 LRU算法 LRU Least Recently Used 最近最少使用算法 LRU 算法的思想是如果一个数据在最近一段时间没有被访

  • JavaScript双向链表实现LFU缓存算法

    目录 什么是LFU 描述 解题思路 1.构造节点结构体 2.构造双向链表 3.编写链表头添加节点方法 4.编写删除节点方法 5.构造LRU缓存结构体 6.编写get方法 7.编写put方法 什么是LFU LFU(Least Frequently Used),最近最少使用策略,也就是说在一段时间内,数据被使用频次最少的,优先被淘汰.它是一种用于管理计算机内存的缓存算法,采用LFU算法的最简单方法是为每个加载到缓存的块分配一个计数器.每次引用该块时,计数器将增加一.当缓存达到容量并有一个新的内存块等

  • Java实现常用缓存淘汰算法:FIFO、LRU、LFU

    目录 缓存淘汰算法 FIFO LRU LFU 总结 缓存淘汰算法 在高并发.高性能的质量要求不断提高时,我们首先会想到的就是利用缓存予以应对. 第一次请求时把计算好的结果存放在缓存中,下次遇到同样的请求时,把之前保存在缓存中的数据直接拿来使用. 但是,缓存的空间一般都是有限,不可能把所有的结果全部保存下来.那么,当缓存空间全部被占满再有新的数据需要被保存,就要决定删除原来的哪些数据.如何做这样决定需要使用缓存淘汰算法. 常用的缓存淘汰算法有:FIFO.LRU.LFU,下面我们就逐一介绍一下. F

  • JS 实现缓存算法的示例(FIFO/LRU)

    FIFO 最简单的一种缓存算法,设置缓存上限,当达到了缓存上限的时候,按照先进先出的策略进行淘汰,再增加进新的 k-v . 使用了一个对象作为缓存,一个数组配合着记录添加进对象时的顺序,判断是否到达上限,若到达上限取数组中的第一个元素key,对应删除对象中的键值. /** * FIFO队列算法实现缓存 * 需要一个对象和一个数组作为辅助 * 数组记录进入顺序 */ class FifoCache{ constructor(limit){ this.limit = limit || 10 this

  • JavaScript双向链表实现LRU缓存算法的示例代码

    目录 目标 什么是LRU 简介 硬件支持 寄存器 栈 代码实现 思路 链表节点数据结构 链表数据结构 LRUCache数据结构 完整代码 测试 目标 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构. 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 . void put(int key

  • JSP 开发之hibernate配置二级缓存的方法

    JSP 开发之hibernate配置二级缓存的方法 hibernate二级缓存也称为进程级的缓存或SessionFactory级的缓存. 二级缓存是全局缓存,它可以被所有的session共享. 二级缓存的生命周期和SessionFactory的生命周期一致,SessionFactory可以管理二级缓存. 常用的缓存插件 Hibernater二级缓存是一个插件,下面是几种常用的缓存插件: EhCache:可作为进程范围的缓存,存放数据的物理介质可以是内存或硬盘,对Hibernate的查询缓存提供了

  • 缓存替换策略及应用(以Redis、InnoDB为例)

    1 概述 在操作系统的页面管理中,内存会维护一部分数据以备进程使用,但是由于内存的大小必然是远远小于硬盘的,当某些进程访问到内存中没有的数据时,必然需要从硬盘中读进内存,所以迫于内存容量的压力下迫使操作系统将一些页换出,或者说踢出,而决定将哪些(个)页面踢出就是内存替换策略. 我们考虑内存中的页实际上是整个系统页的子集,所以内存可以当成系统中虚拟内存的缓存(Cache),所以页面置换算法就是缓存替换的方法. 一般意义下,选取页面置换算法即选取一个缓存命中率更高的或者说缺页率更低的算法,但实际上有

  • 基于Spring Cache实现Caffeine+Redis二级缓存

    目录 一.聊聊什么是硬编码使用缓存? 二.Spring Cache简介 1.Cache接口 2.CacheManager接口 3.常用注解说明 三.使用二级缓存需要思考的一些问题? 四.Caffeine 简介 1.写入缓存策略 2.缓存值的清理策略 3.统计 4.高效的缓存淘汰算法 5.其他说明 五.基于Spring Cache实现二级缓存(Caffeine+Redis) 1.maven引入使用 2.application.yml 3.启动类上增加@EnableCaching 4.在需要缓存的方

  • Android缓存机制——LruCache的详解

    概述 LruCache的核心原理就是对LinkedHashMap的有效利用,它的内部存在一个LinkedHashMap成员变量,值得注意的4个方法:构造方法.get.put.trimToSize LRU(Least Recently Used)缓存算法便应运而生,LRU是最近最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些最近最少使用的缓存对象.采用LRU算法的缓存有两种:LrhCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法. LRU原理

随机推荐