python kafka 多线程消费者&手动提交实例

官方文档:https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html

import threading

import os
import sys
from kafka import KafkaConsumer, TopicPartition, OffsetAndMetadata

from consumers.db_util import *
from consumers.json_dispose import *
from collections import OrderedDict

threads = []
# col_dic, sql_dic = get()

class MyThread(threading.Thread):
  def __init__(self, thread_name, topic, partition):
    threading.Thread.__init__(self)
    self.thread_name = thread_name
    # self.keyName = keyName
    self.partition = partition
    self.topic = topic

  def run(self):
    print("Starting " + self.name)
    Consumer(self.thread_name, self.topic, self.partition)

  def stop(self):
    sys.exit()

def Consumer(thread_name, topic, partition):
  broker_list = '172.16.90.63:6667, 172.16.90.58:6667, 172.16.90.59:6667'
  '''
  fetch_min_bytes(int) - 服务器为获取请求而返回的最小数据量,否则请等待
  fetch_max_wait_ms(int) - 如果没有足够的数据立即满足fetch_min_bytes给出的要求,服务器在回应提取请求之前将阻塞的最大时间量(以毫秒为单位)
  fetch_max_bytes(int) - 服务器应为获取请求返回的最大数据量。这不是绝对最大值,如果获取的第一个非空分区中的第一条消息大于此值,
              则仍将返回消息以确保消费者可以取得进展。注意:使用者并行执行对多个代理的提取,因此内存使用将取决于包含该主题分区的代理的数量。
              支持的Kafka版本> = 0.10.1.0。默认值:52428800(50 MB)。
  enable_auto_commit(bool) - 如果为True,则消费者的偏移量将在后台定期提交。默认值:True。
  max_poll_records(int) - 单次调用中返回的最大记录数poll()。默认值:500
  max_poll_interval_ms(int) - poll()使用使用者组管理时的调用之间的最大延迟 。这为消费者在获取更多记录之前可以闲置的时间量设置了上限。
                如果 poll()在此超时到期之前未调用,则认为使用者失败,并且该组将重新平衡以便将分区重新分配给另一个成员。默认300000
  '''
  consumer = KafkaConsumer(bootstrap_servers=broker_list,
               group_id="xiaofesi",
               client_id=thread_name,
               enable_auto_commit=False,
               fetch_min_bytes=1024*1024,#1M
               # fetch_max_bytes=1024 * 1024 * 1024 * 10,
               fetch_max_wait_ms=60000,#30s
               request_timeout_ms=305000,
               # consumer_timeout_ms=1,
               # max_poll_records=5000,
               # max_poll_interval_ms=60000 无该参数
               )
  #查出数据库上次保存的offset,此offset已经是上次消费最后一条的offset的offset+1,也就是这次消费的起始位
  dic = get_kafka(topic, partition)
  tp = TopicPartition(topic, partition)
  print(thread_name, tp, dic['offset'])
  #分配该消费者的TopicPartition,也就是topic和partition,根据参数,我是三个消费者,三个线程,每个线程消费者消费一个分区
  consumer.assign([tp])
  #重置此消费者消费的起始位
  consumer.seek(tp, dic['offset'])
  print("程序首次运行\t线程:", thread_name, "分区:", partition, "偏移量:", dic['offset'], "\t开始消费...")
  num=0 #记录该消费者消费次数
  # end_offset = consumer.end_offsets([tp])[tp]
  # print(end_offset)
  while True:
    args = OrderedDict()
    msg = consumer.poll(timeout_ms=60000)
    end_offset = consumer.end_offsets([tp])[tp]
    print('已保存的偏移量', consumer.committed(tp),'最新偏移量,',end_offset)
    if len(msg) > 0:
      print("线程:", thread_name, "分区:", partition, "最大偏移量:", end_offset, "有无数据,", len(msg))
      lines=0
      for data in msg.values():
        for line in data:
          lines+=1
          line = eval(line.value.decode('utf-8'))
          '''
          do something
          '''
      # 线程此批次消息条数
      print(thread_name,"lines",lines)
      #数据保存至数据库
      is_succeed = save_to_db(args, thread_name)
      if is_succeed:
        #更新自己保存在数据库中的各topic, partition的偏移量
        is_succeed1 = update_offset(topic, partition, end_offset)
        #手动提交偏移量 offsets格式:{TopicPartition:OffsetAndMetadata(offset_num,None)}
        consumer.commit(offsets={tp:(OffsetAndMetadata(end_offset,None))})
        print(thread_name,"to db suss",num+1)
        if is_succeed1 == 0:
          #系统退出?这个还没试
          os.exit()
          '''
          sys.exit()  只能退出该线程,也就是说其它两个线程正常运行,主程序不退出
          '''
      else:
        os.exit()
    else:
      print(thread_name,'没有数据')
    num+=1
    print(thread_name,"第",num,"次")

if __name__ == '__main__':
  try:
    t1 = MyThread("Thread-0", "test", 0)
    threads.append(t1)
    t2 = MyThread("Thread-1", "test", 1)
    threads.append(t2)
    t3 = MyThread("Thread-2", "test", 2)
    threads.append(t3)

    for t in threads:
      t.start()

    for t in threads:
      t.join()

    print("exit program with 0")
  except:
    print("Error: failed to run consumer program")

以上这篇python kafka 多线程消费者&手动提交实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python消费kafka数据批量插入到es的方法

    1.es的批量插入 这是为了方便后期配置的更改,把配置信息放在logging.conf中 用elasticsearch来实现批量操作,先安装依赖包,sudo pip install Elasticsearch2 from elasticsearch import Elasticsearch class ImportEsData: logging.config.fileConfig("logging.conf") logger = logging.getLogger("msg&

  • 在python环境下运用kafka对数据进行实时传输的方法

    背景: 为了满足各个平台间数据的传输,以及能确保历史性和实时性.先选用kafka作为不同平台数据传输的中转站,来满足我们对跨平台数据发送与接收的需要. kafka简介: Kafka is a distributed,partitioned,replicated commit logservice.它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现.kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外ka

  • python操作kafka实践的示例代码

    1.先看最简单的场景,生产者生产消息,消费者接收消息,下面是生产者的简单代码. #!/usr/bin/env python # -*- coding: utf-8 -*- import json from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='xxxx:x') msg_dict = { "sleep_time": 10, "db_config": { "

  • python hbase读取数据发送kafka的方法

    本例子实现从hbase获取数据,并发送kafka. 使用 #!/usr/bin/env python #coding=utf-8 import sys import time import json sys.path.append('/usr/local/lib/python3.5/site-packages') from thrift import Thrift from thrift.transport import TSocket from thrift.transport import

  • kafka-python批量发送数据的实例

    如下所示: from kafka import KafkaClient from kafka.producer import SimpleProducer def send_data_2_kafka(datas): ''' 向kafka解析队列发送数据 ''' client = KafkaClient(hosts=KAFKABROKER.split(","), timeout=30) producer = SimpleProducer(client, async=False) curc

  • python 消费 kafka 数据教程

    1.安装python模块 pip install --user kafka-python==1.4.3 如果报错压缩相关的错尝试安装下面的依赖 yum install snappy-devel yum install lz4-devel pip install python-snappy pip install lz4 2.生产者 #!/usr/bin/env python # coding : utf-8 from kafka import KafkaProducer import json

  • 对python操作kafka写入json数据的简单demo分享

    如下所示: 安装kafka支持库pip install kafka-python from kafka import KafkaProducer import json ''' 生产者demo 向test_lyl2主题中循环写入10条json数据 注意事项:要写入json数据需加上value_serializer参数,如下代码 ''' producer = KafkaProducer( value_serializer=lambda v: json.dumps(v).encode('utf-8'

  • python kafka 多线程消费者&手动提交实例

    官方文档:https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html import threading import os import sys from kafka import KafkaConsumer, TopicPartition, OffsetAndMetadata from consumers.db_util import * from consumers.json_dispose import *

  • Python Pyqt5多线程更新UI代码实例(防止界面卡死)

    """ 在编写GUI界面中,通常用会有一些按钮,点击后触发事件, 比如去下载一个文件或者做一些操作, 这些操作会耗时,如果不能及时结束,主线程将会阻塞, 这样界面就会出现未响应的状态,因此必须使用多线程来解决这个问题. """ 代码实例 from PyQt5.Qt import (QApplication, QWidget, QPushButton,QThread,QMutex,pyqtSignal) import sys import time

  • Python 爬虫多线程详解及实例代码

    python是支持多线程的,主要是通过thread和threading这两个模块来实现的.thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用. 虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫. 下面用一个实例来验证多线程的效率.代码只涉及页面获取,并没有解析出来. # -*-coding:utf-8 -*- import urllib2, time import thread

  • 详解Python 模拟实现生产者消费者模式的实例

    详解Python 模拟实现生产者消费者模式的实例 散仙使用python3.4模拟实现的一个生产者与消费者的例子,用到的知识有线程,队列,循环等,源码如下: Python代码 import queue import time import threading import random q=queue.Queue(5) #生产者 def pr(): name=threading.current_thread().getName() print(name+"线程启动......") for

  • Python 自动化表单提交实例代码

    今天以一个表单的自动提交,来进一步学习selenium的用法 练习目标 0)运用selenium启动firefox并载入指定页面(这部分可查看本人文章 http://www.cnblogs.com/liu2008hz/p/6958126.html) 1)页面元素查找(多种查找方式:find_element_*) 2)内容填充(send_keys) 3)iframe与父页面切换(switch_to_frame是切换到iframe,switch_to_default_content是切换到主页面)

  • Python实现多线程抓取网页功能实例详解

    本文实例讲述了Python实现多线程抓取网页功能.分享给大家供大家参考,具体如下: 最近,一直在做网络爬虫相关的东西. 看了一下开源C++写的larbin爬虫,仔细阅读了里面的设计思想和一些关键技术的实现. 1.larbin的URL去重用的很高效的bloom filter算法: 2.DNS处理,使用的adns异步的开源组件: 3.对于url队列的处理,则是用部分缓存到内存,部分写入文件的策略. 4.larbin对文件的相关操作做了很多工作 5.在larbin里有连接池,通过创建套接字,向目标站点

  • python socket多线程通讯实例分析(聊天室)

    本文实例讲述了python socket多线程通讯方法.分享给大家供大家参考,具体如下: #!/usr/bin/evn python """ 这是一个Socket+多进程的例子(聊天服务端) """ import socket import threading # 处理中文数据用的 encoding = "GBK" def HKServer(client, addr): """ 与客户端时实通讯函

  • Python threading多线程编程实例

    Python 的多线程有两种实现方法: 函数,线程类 1.函数 调用 thread 模块中的 start_new_thread() 函数来创建线程,以线程函数的形式告诉线程该做什么 复制代码 代码如下: # -*- coding: utf-8 -*- import thread def f(name):   #定义线程函数   print "this is " + name   if __name__ == '__main__':   thread.start_new_thread(f

  • python面向对象多线程爬虫爬取搜狐页面的实例代码

    首先我们需要几个包:requests, lxml, bs4, pymongo, redis 1. 创建爬虫对象,具有的几个行为:抓取页面,解析页面,抽取页面,储存页面 class Spider(object): def __init__(self): # 状态(是否工作) self.status = SpiderStatus.IDLE # 抓取页面 def fetch(self, current_url): pass # 解析页面 def parse(self, html_page): pass

  • python支持多线程的爬虫实例

    python是支持多线程的, 主要是通过thread和threading这两个模块来实现的,本文主要给大家分享python实现多线程网页爬虫 一般来说,使用线程有两种模式, 一种是创建线程要执行的函数, 把这个函数传递进Thread对象里,让它来执行. 另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里. 实现多线程网页爬虫,采用了多线程和锁机制,实现了广度优先算法的网页爬虫. 先给大家简单介绍下我的实现思路: 对于一个网络爬虫,如果要按广度遍历的方

随机推荐