pytorch AvgPool2d函数使用详解

我就废话不多说了,直接上代码吧!

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np

input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]]]))
print("input shape",input.shape)
c = F.avg_pool1d(input, kernel_size=3, stride=2)
print(c)
print("c shape:",c.shape)

# m = nn.AvgPool2d(3, stride=2)
m = nn.AvgPool2d((2, 2), stride=(2, 2))
input = Variable(torch.randn(20, 18, 50, 32)) # bach是20,图片size是50*31,chanel是18(通道是18,也就是每张图有18个fature map)
input = np.array([[[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
          [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]],
         [[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
          [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]]]) #size2*2*4*4
print("input shape:",input.shape)
input = Variable(torch.FloatTensor(input))
output = m(input)
print(output)
print("output shape:",output.shape)#(2,2,2,2)

输出:

input shape torch.Size([2, 2, 7])
tensor([[[ 2.3333, 4.0000, 6.0000],
     [ 2.0000, 4.0000, 6.0000]],

    [[ 2.3333, 4.0000, 6.0000],
     [ 2.0000, 4.0000, 6.0000]]])
c shape: torch.Size([2, 2, 3])
input shape: (2, 2, 4, 4)
tensor([[[[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]],

     [[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]]],

    [[[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]],

     [[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]]]])
output shape: torch.Size([2, 2, 2, 2])

pytorch中的F.avg_pool1d()平均池化操作作用于一维,input的维度是三维比如[2,2,7]。F.avg_pool1d()中核size是3,步长是2表示每三个数取平均,每隔两个数取一次.比如[1,3,3,4,5,6,7]安照3个数取均值,两步取一次,那么结果就是[ 2.3333 ,4 ,6 ],也就是核是一维的,也只作用于一个维度。按照池化操作计算公式input size为[2,2,7],kernel size为3,步长为2,则输出维度计算(7-3)/2+1=3所以输出维度是[2,2,3],这与输出结果是一致的。

pytorch中的F.avg_pool2d(),input是维度是4维如[2,2,4,4],表示这里批量数是2也就是两张图像,这里应该是有通道(feature map)数量是2,图像是size是4*4的.核size是(2,2)步长是(2,2)表示被核覆盖的数取平均,横向纵向的步长都是2.那么核是二维的,所以取均值时也是覆盖二维取的。输出中第一个1.5的计算是:1+2+1+2/4=1.5.表示第一张图像左上角的四个像素点的均值。按照池化操作计算公式input size为[2,2,4,4],kernel size为2*2,步长为2,则输出维度计算(4-2)/2+1=2所以输出维度是[2,2,2,2],这与输出结果是一致的。

以上这篇pytorch AvgPool2d函数使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch中permute的用法详解

    permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # --> torch.Size([1, 2, 3]) permuted=unpermuted.permute(

  • Pytorch实现各种2d卷积示例

    普通卷积 使用nn.Conv2d(),一般还会接上BN和ReLu 参数量NNCin*Cout+Cout(如果有bias,相对来说表示对参数量影响很小,所以后面不考虑) class ConvBNReLU(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ConvBNReLU, self).__init__() self.op = nn.Sequential( n

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • pytorch中的卷积和池化计算方式详解

    TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小:而nn输出大小可以通过padding进行改变 nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算 class torch.nn.MaxPool2d(kernel_size, stride=Non

  • pytorch AvgPool2d函数使用详解

    我就废话不多说了,直接上代码吧! import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2, 3

  • pytorch中torch.max和Tensor.view函数用法详解

    torch.max() 1. torch.max()简单来说是返回一个tensor中的最大值. 例如: >>> si=torch.randn(4,5) >>> print(si) tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064], [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364], [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088], [-0.86

  • pytorch中的nn.ZeroPad2d()零填充函数实例详解

    在卷积神经网络中,有使用设置padding的参数,配合卷积步长,可以使得卷积后的特征图尺寸大小不发生改变,那么在手动实现图片或特征图的边界零填充时,常用的函数是nn.ZeroPad2d(),可以指定tensor的四个方向上的填充,比如左边添加1dim.右边添加2dim.上边添加3dim.下边添加4dim,即指定paddin参数为(1,2,3,4),本文中代码设置的是(3,4,5,6)如下: import torch.nn as nn import cv2 import torchvision f

  • pytorch 限制GPU使用效率详解(计算效率)

    问题 用过 tensorflow 的人都知道, tf 可以限制程序在 GPU 中的使用效率,但 pytorch 中没有这个操作. 思路 于是我想到了一个代替方法,玩过单片机点灯的同学都知道,灯的亮度是靠占空比实现的,这实际上也是计算机的运行原理. 那我们是不是也可以通过增加 GPU 不工作的时间,进而降低 GPU 的使用效率 ? 主要代码 import time ... rest_time = 0.15 ... for _ in range( XXX ): ... outputs = all_G

  • Python torch.flatten()函数案例详解

    先看函数参数: torch.flatten(input, start_dim=0, end_dim=-1) input: 一个 tensor,即要被"推平"的 tensor. start_dim: "推平"的起始维度. end_dim: "推平"的结束维度. 首先如果按照 start_dim 和 end_dim 的默认值,那么这个函数会把 input 推平成一个 shape 为 [n][n] 的tensor,其中 nn 即 input 中元素个数

  • Pytorch自动求导函数详解流程以及与TensorFlow搭建网络的对比

    一.定义新的自动求导函数 在底层,每个原始的自动求导运算实际上是两个在Tensor上运行的函数.其中,forward函数计算从输入Tensor获得的输出Tensors.而backward函数接收输出,Tensors对于某个标量值得梯度,并且计算输入Tensors相对于该相同标量值得梯度. 在Pytorch中,可以容易地通过定义torch.autograd.Function的子类实现forward和backward函数,来定义自动求导函数.之后就可以使用这个新的自动梯度运算符了.我们可以通过构造一

  • C++ 中const修饰虚函数实例详解

    C++ 中const修饰虚函数实例详解 [1]程序1 #include <iostream> using namespace std; class Base { public: virtual void print() const = 0; }; class Test : public Base { public: void print(); }; void Test::print() { cout << "Test::print()" << end

  • Linux 在Shell脚本中使用函数实例详解

    Linux 在Shell脚本中使用函数实例详解 Shell的函数 Shell程序也支持函数.函数能完成一特定的功能,可以重复调用这个函数. 函数格式如下: 函数名() { 函数体 } 函数调用方式: 函数名 参数列表 实例:编写一函数add求两个数的和,这两个数用位置参数传入,最后输出结果. root@ubuntu:/home/study# vi test3 #!/bin/bash add(){ a=$1; b=$2; z=`expr $a + $b`; echo "The sum is $z&

  • 基于js的变量提升和函数提升(详解)

    一.变量提升 在ES6之前,JavaScript没有块级作用域(一对花括号{}即为一个块级作用域),只有全局作用域和函数作用域.变量提升即将变量声明提升到它所在作用域的最开始的部分. 上个简历的例子如: console.log(global); // undefined var global = 'global'; console.log(global); // global function fn () { console.log(a); // undefined var a = 'aaa';

  • JavaScript中push(),join() 函数 实例详解

    定义和用法 push方法 可向数组的末尾添加一个或多个元素,并返回一个新的长度. join方法 用于把数组中所有元素添加到一个指定的字符串,元素是通过指定的分隔符进行分割的. 语法 arrayObject.push(newelement1,newelement2,....,newelementX) arrayObject.join(separator). 参数描述newelement1必需.要添加到数组的第一个元素.newelement2可选.要添加到数组的第二个元素.newelementX可选

随机推荐