浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)

浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)

安装教程:

cityscapes训练:

遇到的坑:

1. 环境:

- tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+py3.5

- 使用最新的tensorflow1.12或者1.10都不行,报错:报错不造卷积算法(convolution algorithm...)

2. 数据集转换

# Exit immediately if a command exits with a non-zero status.
set -e
CURRENT_DIR=$(pwd)
WORK_DIR="."
# Root path for Cityscapes dataset.
CITYSCAPES_ROOT="${WORK_DIR}/cityscapes"
# Create training labels.
python "${CITYSCAPES_ROOT}/cityscapesscripts/preparation/createTrainIdLabelImgs.py"
# Build TFRecords of the dataset.
# First, create output directory for storing TFRecords.
OUTPUT_DIR="${CITYSCAPES_ROOT}/tfrecord"
mkdir -p "${OUTPUT_DIR}"
BUILD_SCRIPT="${CURRENT_DIR}/build_cityscapes_data.py"
echo "Converting Cityscapes dataset..."
python "${BUILD_SCRIPT}" \
  --cityscapes_root="${CITYSCAPES_ROOT}" \
  --output_dir="${OUTPUT_DIR}" \

- 首先当前conda环境下安装cityscapesScripts模块,要支持py3.5才行;

- 由于cityscapesscripts/preparation/createTrainIdLabelImgs.py里面默认会把数据集gtFine下面的test,train,val文件夹json文件都转为TrainIdlandelImgs.png;然而在test文件下有很多json文件编码格式是错误的,大约十几张,每次报错,然后将其剔除!!!

- 然后执行build_cityscapes_data.py将img,lable转换为tfrecord格式。

3. 训练cityscapes代码

- 将训练代码写成脚本文件:train_deeplab_cityscapes.sh

#!/bin/bash
# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco

PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt'
PATH_TO_TRAIN_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab'
# From tensorflow/models/research/
python "${WORK_DIR}"/train.py \
    --logtostderr \
    --training_number_of_steps=40000 \
    --train_split="train" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --train_crop_size=513 \
    --train_crop_size=513 \
    --train_batch_size=1 \
    --fine_tune_batch_norm=False \
    --dataset="cityscapes" \
    --tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

参数分析:

training_number_of_steps: 训练迭代次数;

train_crop_size:训练图片的裁剪大小,因为我的GPU只有8G,故我将这个设置为513了;

train_batch_size: 训练的batchsize,也是因为硬件条件,故保持1;

fine_tune_batch_norm=False :是否使用batch_norm,官方建议,如果训练的batch_size小于12的话,须将该参数设置为False,这个设置很重要,否则的话训练时会在2000步左右报错

tf_initial_checkpoint:预训练的初始checkpoint,这里设置的即是前面下载的../research/deeplab/backbone/deeplabv3_cityscapes_train/model.ckpt.index

train_logdir: 保存训练权重的目录,注意在开始的创建工程目录的时候就创建了,这里设置为"../research/deeplab/exp/train_on_train_set/train/"

dataset_dir:数据集的地址,前面创建的TFRecords目录。这里设置为"../dataset/cityscapes/tfrecord"

4.验证测试

- 验证脚本:

#!/bin/bash
# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco
PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/'
PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_EVAL_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/eval/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab'
# From tensorflow/models/research/
python "${WORK_DIR}"/eval.py \
    --logtostderr \
    --eval_split="val" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --eval_crop_size=1025 \
    --eval_crop_size=2049 \
    --dataset="cityscapes" \
    --checkpoint_dir=${PATH_TO_INITIAL_CHECKPOINT} \
    --eval_logdir=${PATH_TO_EVAL_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

- rusult:model.ckpt-40000为在初始化模型上训练40000次迭代的模型;后面用初始化模型测试miou_1.0还是很低,不知道是不是有什么参数设置的问题!!!

- 注意,如果使用官方提供的checkpoint,压缩包中是没有checkpoint文件的,需要手动添加一个checkpoint文件;初始化模型中是没有提供chekpoint文件的。

INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/model.ckpt-40000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting evaluation at 2018-12-18-07:13:08
INFO:tensorflow:Evaluation [50/500]
INFO:tensorflow:Evaluation [100/500]
INFO:tensorflow:Evaluation [150/500]
INFO:tensorflow:Evaluation [200/500]
INFO:tensorflow:Evaluation [250/500]
INFO:tensorflow:Evaluation [300/500]
INFO:tensorflow:Evaluation [350/500]
INFO:tensorflow:Evaluation [400/500]
INFO:tensorflow:Evaluation [450/500]
miou_1.0[0.478293568]
INFO:tensorflow:Waiting for new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/
INFO:tensorflow:Found new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
INFO:tensorflow:Graph was finalized.
2018-12-18 15:18:05.210957: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0
2018-12-18 15:18:05.211047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-12-18 15:18:05.211077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929]      0
2018-12-18 15:18:05.211100: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0:   N
2018-12-18 15:18:05.211645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9404 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting evaluation at 2018-12-18-07:18:06
INFO:tensorflow:Evaluation [50/500]
INFO:tensorflow:Evaluation [100/500]
INFO:tensorflow:Evaluation [150/500]
INFO:tensorflow:Evaluation [200/500]
INFO:tensorflow:Evaluation [250/500]
INFO:tensorflow:Evaluation [300/500]
INFO:tensorflow:Evaluation [350/500]
INFO:tensorflow:Evaluation [400/500]
INFO:tensorflow:Evaluation [450/500]
miou_1.0[0.496331513]

5.可视化测试

- 在vis目录下生成分割结果图

#!/bin/bash
# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco

PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_VIS_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/vis/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab'

# From tensorflow/models/research/
python "${WORK_DIR}"/vis.py \
    --logtostderr \
    --vis_split="val" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --vis_crop_size=1025 \
    --vis_crop_size=2049 \
    --dataset="cityscapes" \
    --colormap_type="cityscapes" \
    --checkpoint_dir=${PATH_TO_CHECKPOINT} \
    --vis_logdir=${PATH_TO_VIS_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow2.0:张量的合并与分割实例

    ** 一 tf.concat( ) 函数–合并 ** In [2]: a = tf.ones([4,35,8]) In [3]: b = tf.ones([2,35,8]) In [4]: c = tf.concat([a,b],axis=0) In [5]: c.shape Out[5]: TensorShape([6, 35, 8]) In [6]: a = tf.ones([4,32,8]) In [7]: b = tf.ones([4,3,8]) In [8]: c = tf.conca

  • 使用Tensorflow将自己的数据分割成batch训练实例

    学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形式,就需要将其转换为batch形式,本文将介绍一个将数据打包成batch的方法. 一.tf.slice_input_producer() 首先需要讲解两个函数,第一个函数是 :tf.slice_input_producer(),这个函数的作用是从输入的tensor_list按要求抽取一个tensor放入文件名队列

  • tensorflow常用函数API介绍

    摘要:本文介绍了tensorflow的常用函数. 1.tensorflow常用函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设 备相关的

  • windows10下安装TensorFlow Object Detection API的步骤

    安装步骤: 模型源码:https://github.com/tensorflow/models 1.下载源码后解压,修改文件夹名为models (以下步骤中涉及到路径的地方需要根据自己的实际情况而定) 2.安装protoc: 打开网址https://github.com/protocolbuffers/protobuf/releases,,我这里下载的是proto-3.7.1-win64.zip,根据自己的电脑配置来. 下载后复制到与models同名的文件夹下,解压,生成:bin.include

  • 浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)

    浅谈tensorflow语义分割api的使用(deeplab训练cityscapes) 安装教程: cityscapes训练: 遇到的坑: 1. 环境: - tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+py3.5 - 使用最新的tensorflow1.12或者1.10都不行,报错:报错不造卷积算法(convolution algorithm...) 2. 数据集转换 # Exit immediately if a command exits with a

  • 浅谈tensorflow之内存暴涨问题

    在用tensorflow实现一些模型的时候,有时候我们在运行程序的时候,会发现程序占用的内存在不断增长.最后内存溢出,程序被kill掉了. 这个问题,其实有两个可能性.一个是比较常见,同时也是很难发现的.这个问题的解决,需要我们知道tensorflow在构图的时候,是没有所谓的临时变量的,只要有operator.那么tensorflow就会在构建的图中增加这个operator所代表的节点.所以,在运行程序的过程中,内存不断增长的原因就是在模型训练迭代的过程中,tensorflow一直在帮你增加图

  • 浅谈Tensorflow加载Vgg预训练模型的几个注意事项

    写这个博客的关键Bug: Value passed to parameter 'input' has DataType uint8 not in list of allowed values: float16, bfloat16, float32, float64.本博客将围绕 加载图片 和 保存图片到本地 来详细解释和解决上述的Bug及其引出来的一系列Bug. 加载图片 首先,造成上述Bug的代码如下所示 image_path = "data/test.jpg" # 本地的测试图片

  • 浅谈tensorflow模型保存为pb的各种姿势

    一,直接保存pb 1, 首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型与使用模型的解耦,使得前向推导inference代码统一.另外的好处就是保存为pb的时候,模型的变量会变成固定的,导致模型的大小会大大减小. 这里稍稍解释下pb:是MetaGraph的protocol buffer格式的文件,MetaGraph包括计算图,数据流,以及相关的变量和输入输出 主要使用tf.SavedModelBuilde

  • 浅谈tensorflow中dataset.shuffle和dataset.batch dataset.repeat注意点

    batch很好理解,就是batch size.注意在一个epoch中最后一个batch大小可能小于等于batch size dataset.repeat就是俗称epoch,但在tf中与dataset.shuffle的使用顺序可能会导致个epoch的混合 dataset.shuffle就是说维持一个buffer size 大小的 shuffle buffer,图中所需的每个样本从shuffle buffer中获取,取得一个样本后,就从源数据集中加入一个样本到shuffle buffer中. imp

  • 浅谈java调用Restful API接口的方式

    摘要:最近有一个需求,为客户提供一些RestfulAPI接口,QA使用postman进行测试,但是postman的测试接口与java调用的相似但并不相同,于是想自己写一个程序去测试RestfulAPI接口,由于使用的是HTTPS,所以还要考虑到对于HTTPS的处理.由于我也是首次使用Java调用restful接口,所以还要研究一番,自然也是查阅了一些资料. 分析:这个问题与模块之间的调用不同,比如我有两个模块frontend和backend,frontend提供前台展示,backend提供数据支

  • 浅谈tensorflow中几个随机函数的用法

    如下所示: tf.constant(value, dtype=None, shape=None) 创建一个常量tensor,按照给出value来赋值,可以用shape来指定其形状.value可以是一个数,也可以是一个list. 如果是一个数,那么这个常亮中所有值的按该数来赋值. tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32) tf.truncated_normal(shape, mean=0.0, stddev=1.0,

  • 浅谈Tensorflow由于版本问题出现的几种错误及解决方法

    1.AttributeError: 'module' object has no attribute 'rnn_cell' S:将tf.nn.rnn_cell替换为tf.contrib.rnn 2.TypeError: Expected int32, got list containing Tensors of type '_Message' instead. S:由于tf.concat的问题,将tf.concat(1, [conv1, conv2]) 的格式替换为tf.concat( [con

  • 浅谈tensorflow中张量的提取值和赋值

    tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量.严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作. 已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值. tf.ga

  • 浅谈tensorflow中Dataset图片的批量读取及维度的操作详解

    三维的读取图片(w, h, c): import tensorflow as tf import glob import os def _parse_function(filename): # print(filename) image_string = tf.read_file(filename) image_decoded = tf.image.decode_image(image_string) # (375, 500, 3) image_resized = tf.image.resize

随机推荐