python基础之迭代器与生成器

目录
  • 1. 迭代器
    • 1.1 迭代器的使用
    • 1.2 创建类的迭代器
  • 2. 生成器
    • 2.1 生成器的使用
    • 2.2 生成器表达式
  • 总结

1. 迭代器

1.1 迭代器的使用

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。迭代器有两个基本的方法:iter() 和 next()。字符串,列表或元组对象都可用于创建迭代器。

iter(iterable):用于返回可迭代对象的一个迭代器。
next(iterator): 从迭代器iterator中获取下一条记录。如果无法获取下 一条记录,则触发StopIteration异常

iter和next使用举例

lst = [1,2,3,4]
it = iter(lst) #创建迭代器对象
print(it) # <list_iterator object at 0x7fb8e443ed30>
print(next(it)) # 1
print(next(it)) # 2

for循环使用举例:

lst = [1,2,3,4]
it = iter(lst) #创建迭代器对象
for x in it:
    print(x, end=" ") # 1 2 3 4

也可以使用next替代上例:

import sys  # 引入 sys 模块

lst = [1, 2, 3, 4]
it = iter(lst)  # 创建迭代器对象

while True:
    try:
        print(next(it))
    except StopIteration:
        sys.exit()

输出:

1
2
3
4

1.2 创建类的迭代器

把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。

class MyNumbers:
    def __iter__(self):
        self.a = 1
        return self

    def __next__(self):
        if self.a <= 10: #迭代次数,要不然for循环会一直执行
            x = self.a
            self.a += 1
            return x
        else:
            raise StopIteration

myclass = MyNumbers()
myiter = iter(myclass) 

for x in myiter: #这里也可以直接用对象,因为它的类已经定义iter和next。
    print(x,end = " ") # 1 2 3 4 5 6 7 8 9 10

2. 生成器

2.1 生成器的使用

在 Python 中,使用了 yield 的函数被称为生成器(generator)。跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

生成器的简单使用举例:

def func(n):
    yield n*2

f = func(5)
print(f) # <generator object func at 0x7f36613ad308>
print(next(f)) # 10,迭代器的值
print(next(f)) # 报错!!!因为这个函数只返回了一个迭代器

便于理解,可以把yield当做return操作,不同的是,yield后面的代码会在下一次调用函数的时候继续执行。所以遇到yield操作时,首先需要先返回迭代器的值,而不会立马执行yield后面的代码,等到下一次调用函数的时候,会继续执行上一次没有完成的操作。显然,使用生成器比迭代器简单,而且性能是一样高效的,我们再来举一个例子进行说明。

def fib(n):
    pre,curr = 0,1
    while n > 0:
        n-=1
        yield curr
        pre,curr = curr,curr+pre
        print("I am a generator!")

for i in fib(5):
    print(i)
    print("-----------------------")

输出:

1
-----------------------
I am a generator!
1
-----------------------
I am a generator!
2
-----------------------
I am a generator!
3
-----------------------
I am a generator!
5
-----------------------
I am a generator!

使用for循环操作时,遍历了5次,最后一次会调用StopIteration,所以会输出5次"I am a generator!"。但是如果使用next则会不同,因为它不会自动调用下一次的函数,如下例所示:

def func(n):
    yield n*2
    print("I am a generator!")

f = func(5)
print(f) # <generator object func at 0x7f36613ad308>
print(next(f)) # 10,迭代器的值

输出结果为:

<generator object func at 0x7fd74460b308>
10

可以看到,因为没有继续调用函数,而不会执行yield后面的程序!

2.2 生成器表达式

生成器表达式与列表推导式很像,唯一的区别就是一个使用综括号一个使用小括号,生成器表达式返回生成器对象,而列表推导式返回列表对象。

g = (i*2 for i in range(10))
print(type(g)) # <class 'generator'>

for i in g:
    print(i,end=" ") # 0 2 4 6 8 10 12 14 16 18

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 彻底搞懂python 迭代器和生成器

    迭代器跟生成器,与上篇文章讲的装饰器一样,都是属于我的一个老大难问题. 通常就是遇到的时候就去搜一下,结果在一大坨各种介绍博客中看了看,回头又忘记了. 你是不是也是这样呢? 俗话说:好记性不如烂笔头,虽然现在基本不咋用笔写字了,但是还是要好好整理下,起码以后我就不用搜了. 如果现在给你一个列表list_a = [1, 2, 3, 4],让你去迭代它,相信大家都很熟悉,直接用for循环就完事儿, list_a = [1, 2, 3, 4] for i in list_a: print(i) 运行

  • Python生成器与迭代器详情

    目录 1.生成器 2.迭代器与可迭代的生成器 1.生成器 现在可以通过生成器来直接创建一个列表,但是由于内存的限制,列表的容量肯定是有限的,如果我们需要一个包含几百个元素的列表,但是每次访问的时候只访问其中的几个,那剩下的元素不使用就很浪费内存空间. 这个时候生成器(Generator)就起到了作用,他是按照某种算法不断生成新的数据,直到满足某一个指定的条件结束 得到生成式的方式有如下几种: 通过列表生成式来得到生成器,示例代码如下: g = (x for x in range(10)) # 将

  • python学习之可迭代对象、迭代器、生成器

    Iterable – 可迭代对象 能够逐一返回其成员项的对象. 可迭代对象的例子包括所有序列类型 (例如 list, str 和 tuple) 以及某些非序列类型例如 dict, 文件对象以及定义了__iter__()方法或是实现了序列语义的__getitem__() 方法的任意自定义类对象. 可迭代对象可用于 for 循环以及许多其他需要一个序列的地方(zip().map() -).当一个可迭代对象作为参数传给内置函数 iter() 时,它会返回该对象的迭代器.这种迭代器适用于对值集合的一次性

  • 一篇文章带你了解python迭代器和生成器

    目录 python迭代器和生成器 2.生成器 总结 python迭代器和生成器 1.迭代器 这里用字典示例 while True 属于无限循环,因字典元素有限,所以用try做异常处理 dict1 = { 'name':'laowang', 'age':18, 'high':180 } iterator = dict1.__iter__() while True: try: res = iterator.__next__() except: break else: print(res,dict1[

  • Python元类与迭代器生成器案例详解

    1.__getattr__和__getattribute__魔法函数 __getattr__是当类调用一个不存在的属性时才会调用getattr魔法函数,他传入的值item就是你这个调用的不存在的值. __getattribute__则是无条件的优先执行,所以如果不是特殊情况最好不要用__getattribute__. class User(object): def __init__(self, name, info): self.name = name self.info = info def

  • python迭代器,生成器详解

    目录 迭代器 生成器 总结 迭代器 聊迭代器前我们要先清楚迭代的概念:通常来讲从一个对象中依次取出数据,这个过程叫做遍历,这个手段称为迭代(重复执行某一段代码块,并将每一次迭代得到的结果作为下一次迭代的初始值). 可迭代对象(iterable):是指该对象可以被用于for-in-循环,例如:集合,列表,元祖,字典,字符串,迭代器等. 在python中如果一个对象实现了 __iter__方法,我们就称之为可迭代对象,可以查看set\list\tuple-等源码内部均实现了__iter__方法 如果

  • 正确理解python迭代器与生成器

    目录 一.迭代器 二.生成器 三.生成器函数 3.1.zip(可迭代对象1,可迭代对象2......) 3.2.enumerate(iterable[,start]) 一.迭代器 迭代器就是iter(可迭代对象函数)返回的对象,说人话.......可迭代对象由一个个迭代器组成 可以用next()函数获取可迭代对象的数据 迭代是访问集合元素的一种方式(因为集合是无序的,所以不能索引),naxt(集合), 迭代器对象从集合的第一个元素开始访问,直到所有元素被访问结束,迭代器只能往前不会往后退 迭代器

  • 稳扎稳打学Python之容器 可迭代对象 迭代器 生成器专题讲解

    目录 一.容器 1.什么是容器? 二.可迭代对象 1.什么是可迭代对象? 三.迭代器 四.序列 五.列表推导式 六.生成器 1.生成器的第一种创建方法:生成器表达式 2.生成器的第二种创建方法:yield 七.小结 今天就来给大家讲讲Python中的容器.可迭代对象.迭代器和生成器这些难理解的概念,让你的Python基础更上一层楼! 一.容器 1.什么是容器? 在Python中,容器是把多种元素组织在一起的数据结构,容器中的元素就可以逐个迭代获取.说白了,它的作用就像它的名字一样:用来存放东西(

  • python基础之迭代器与生成器

    目录 1. 迭代器 1.1 迭代器的使用 1.2 创建类的迭代器 2. 生成器 2.1 生成器的使用 2.2 生成器表达式 总结 1. 迭代器 1.1 迭代器的使用 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退.迭代器有两个基本的方法:iter() 和 next().字符串,列表或元组对象都可用于创建迭代器. iter(iterable):用于返回可迭代对象的一个迭代器. next(iterator): 从迭代器iterator中获取下一条记录.如果无

  • 一文搞懂python 中的迭代器和生成器

    可迭代对象和迭代器 迭代(iterate)意味着重复,就像 for 循环迭代序列和字典那样,但实际上也可使用 for 循环迭代其他对象:实现了方法 __iter__ 的对象(迭代器协议的基础).__iter__方法返回一个迭代器,它是包含方法 __next__ 的对象,调用时可不提供任何参数:当你调用 __next__ 时,迭代器应返回其下一个值:如果没有可供返回的值,应引发 StopIteration 异常:也可使用内置函数 next(),此种情况下,next(it) 与 it.__next(

  • Python函数的迭代器与生成器的示例代码

    函数的迭代器 函数的强大功能叫做迭代器,Python里面最具威力的功能之一.迭代器我们听起来会感觉非常陌生,在list.tuple都有用到它,我们是使用for和in取列表中的每一个元素,对每个元素依次处理,这种方法就叫做迭代,实现这种方法的函数叫做迭代器.迭代器中有两个基本的函数,这个函数叫做方法,这个是面向对象编程称呼的一个方法,这两个方法叫做iter()和next(). 1.什么是迭代?迭代是一个重复的过程,并且每次重复都是基于上一次的结果而来 2.要想了解迭代器到底是什么?必须先了解一个概

  • python三大器之迭代器、生成器、装饰器

    目录 迭代器 生成器 装饰器(非常实用!) 迭代器 聊迭代器前我们要先清楚迭代的概念:通常来讲从一个对象中依次取出数据,这个过程叫做遍历,这个手段称为迭代(重复执行某一段代码块,并将每一次迭代得到的结果作为下一次迭代的初始值).可迭代对象(iterable):是指该对象可以被用于for…in…循环,例如:集合,列表,元祖,字典,字符串,迭代器等. 在python中如果一个对象实现了 __iter__方法,我们就称之为可迭代对象,可以查看set\list\tuple…等源码内部均实现了__iter

  • 举例讲解Python中的迭代器、生成器与列表解析用法

    迭代器:初探 上一章曾经提到过,其实for循环是可用于任何可迭代的对象上的.实际上,对Python中所有会从左至右扫描对象的迭代工具而言都是如此,这些迭代工具包括了for循环.列表解析.in成员关系测试以及map内置函数等. "可迭代对象"的概念在Python中是相当新颖的,基本这就是序列观念的通用化:如果对象时实际保存的序列,或者可以再迭代工具环境中一次产生一个结果的对象,那就看做是可迭代的. >>文件迭代器 作为内置数据类型的文件也是可迭代的,它有一个名为__next_

  • Python中的迭代器与生成器高级用法解析

    迭代器 迭代器是依附于迭代协议的对象--基本意味它有一个next方法(method),当调用时,返回序列中的下一个项目.当无项目可返回时,引发(raise)StopIteration异常. 迭代对象允许一次循环.它保留单次迭代的状态(位置),或从另一个角度讲,每次循环序列都需要一个迭代对象.这意味我们可以同时迭代同一个序列不只一次.将迭代逻辑和序列分离使我们有更多的迭代方式. 调用一个容器(container)的__iter__方法创建迭代对象是掌握迭代器最直接的方式.iter函数为我们节约一些

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • Python中的迭代器与生成器使用及说明

    目录 一.迭代器(Iterator) 1.1 可迭代对象(Iterable) 1.2 将可迭代对象转化为迭代器 1.3 构造迭代器 二.生成器(Generator) 2.2 使用带有 yield 关键字的函数构造生成器 总结 一.迭代器(Iterator) 1.1 可迭代对象(Iterable) 可迭代对象,可以简单理解为可遍历对象,即能够使用 for 循环遍历的对象.Python中常见的可迭代对象有:列表.元组.字符串.集合.range.字典等. 迭代器和生成器都是可迭代对象. 对于Pytho

  • pytorch::Dataloader中的迭代器和生成器应用详解

    在使用pytorch训练模型,经常需要加载大量图片数据,因此pytorch提供了好用的数据加载工具Dataloader. 为了实现小批量循环读取大型数据集,在Dataloader类具体实现中,使用了迭代器和生成器. 这一应用场景正是python中迭代器模式的意义所在,因此本文对Dataloader中代码进行解读,可以更好的理解python中迭代器和生成器的概念. 本文的内容主要有: 解释python中的迭代器和生成器概念 解读pytorch中Dataloader代码,如何使用迭代器和生成器实现数

随机推荐