python装饰器实现对异常代码出现进行自动监控的实现方法

异常,不应该存在,但是我们有时候会遇到这样的情况,比如我们监控服务器的时候,每一秒去采集一次信息,那么有一秒没有采集到我们想要的信息,但是下一秒采集到了, 而后每次的采集都能采集到,就那么一次采集不到,我们应该针对这一次采集不到进行分析吗,这种的情况可以说无法重复出现,我们也无法避免,因为外界的因素太多太多,我们无法去控制这些外面的因素,所以我们会有这样的需求,一段时间内出现频率多少次,我们才能显示一次报警,或者说,一段时间内出现的频率达到我们的异常许可范围我们认为这样的属于异常,我们可以发出报警。

那么我们怎么来实现呢,我想到了装饰器,当程序执行到异常后,我记录时间,写入文件,然后读取最近的第五次的判断,两者时间戳的只差小于60s,我认为这样的可以发送警报,如果大于60s,则认为不足以发出我们的警告,

那么我们来看看我们的代码应该怎么写。

import datetime,time,random
def make(func):
  def mak(*args,**kwargs):
    try:
      func(*args,**kwargs)
    except:
      with open('except.txt','a+') as f:
        except_time=datetime.datetime.now()
        f.writelines(except_time.strftime('%Y-%m-%d %H:%M:%S')+'\n')
        f.close()
      with open('except.txt','rb') as m:
        try:
          date=m.readlines()[-5].decode('utf-8')
          ne=(date.split('\r\n')[0])
          f1=datetime.datetime.strptime(ne,'%Y-%m-%d %H:%M:%S')
          if (except_time-f1).seconds<6:
            print('异常!!!fail')
          else:
            print('正常!')
          m.close()
        except:
          print('越界代表着我们的实验是成功的')
  return mak
@make
def beijing(i,m):
  print(i/m)
if __name__=="__main__":
  while True:
    f=random.choice([0,1,2,3])
    n=random.choice([0,1,2,3])
    beijing(f,n)
    time.sleep(0.3)

这样我们针对一个程序的异常监控就实现了,我们来运行下这个异常监控的代码。,

我们可以看到我们的代码可以正常运行,那么我们来试试,我们对多个程序的代码进行监控,我们的脚本可不可以实现呢。

@make
def shanghai(i,m):
  print(i/m)
@make
def rizhao(i,m):
  print(i/m)
@make
def zhengzhou(i,m):
  print(i/m)

PS:遇到问题没人解答?需要Python学习资料?可以加点击下方链接自行获取
note.youdao.com/noteshare?id=2dce86d0c2588ae7c0a88bee34324d76

我们增加这么几个方法,并且我们去运行他们,

我们可以看到,只要有异常,我们的程序都会记录,当然了,这样的还不能正常利用到我们的工作中,

稍后,可以将这里的异常监控的部分的实践,和我之前写的异常监控脚本想结合下。

总结

到此这篇关于python装饰器实现对异常代码出现进行自动监控的实现方法的文章就介绍到这了,更多相关python装饰器自动监控内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python装饰器限制函数运行时间超时则退出执行

    实际项目中会涉及到需要对有些函数的响应时间做一些限制,如果超时就退出函数的执行,停止等待. 可以利用python中的装饰器实现对函数执行时间的控制. python装饰器简单来说可以在不改变某个函数内部实现和原来调用方式的前提下对该函数增加一些附件的功能,提供了对该函数功能的扩展. 方法一. 使用 signal # coding=utf-8 import signal import time def set_timeout(num, callback): def wrap(func): def h

  • python 一篇文章搞懂装饰器所有用法(建议收藏)

    01. 装饰器语法糖 如果你接触 Python 有一段时间了的话,想必你对 @ 符号一定不陌生了,没错 @ 符号就是装饰器的语法糖. 它放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上.和这个函数绑定在一起.在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为装饰函数 或 装饰器. 你要问我装饰器可以实现什么功能?我只能说你的脑洞有多大,装饰器就有多强大. 装饰器的使用方法很固定: 先定义一个装饰函数(帽子)(也可以

  • python装饰器简介---这一篇也许就够了(推荐)

    Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼. 装饰器引入 初期及问题诞生 假如现在在一个公司,有A B C三个业务部门,还有S一个基础服务部门,目前呢,S部门提供了两个函数,供其他部门调用,函数如下: def f1(): print('f1 called') def f2(): print('f2 called') 在初期,其他部门这样调用是没有问题的,随着公司业务的发展,现在S部门需要对函数调用假如权限验证,如果有权限的话,才

  • python函数装饰器之带参数的函数和带参数的装饰器用法示例

    本文实例讲述了python函数装饰器之带参数的函数和带参数的装饰器用法.分享给大家供大家参考,具体如下: 1. 函数带多个参数 # 普通的装饰器, 打印函数的运行时间 def decrator(func): def wrap(*args, **kwargs): start_time = time.time() res = func(*args, **kwargs) end_time = time.time() print('运行时间为', end_time-start_time) return

  • python中多个装饰器的执行顺序详解

    装饰器是程序开发中经常会用到的一个功能,也是python语言开发的基础知识,如果能够在程序中合理的使用装饰器,不仅可以提高开发效率,而且可以让写的代码看上去显的高大上^_^ 使用场景 可以用到装饰器的地方有很多,简单的举例如以下场景 引入日志 函数执行时间统计 执行函数前预备处理 执行函数后清理功能 权限校验等场景 缓存 今天讲一下python中装饰器的执行顺序,以两个装饰器为例. 装饰器代码如下: def wrapper_out1(func): print('--out11--') def i

  • python装饰器实现对异常代码出现进行自动监控的实现方法

    异常,不应该存在,但是我们有时候会遇到这样的情况,比如我们监控服务器的时候,每一秒去采集一次信息,那么有一秒没有采集到我们想要的信息,但是下一秒采集到了, 而后每次的采集都能采集到,就那么一次采集不到,我们应该针对这一次采集不到进行分析吗,这种的情况可以说无法重复出现,我们也无法避免,因为外界的因素太多太多,我们无法去控制这些外面的因素,所以我们会有这样的需求,一段时间内出现频率多少次,我们才能显示一次报警,或者说,一段时间内出现的频率达到我们的异常许可范围我们认为这样的属于异常,我们可以发出报

  • Python装饰器的应用场景代码总结

    装饰器的应用场景 附加功能 数据的清理或添加: 函数参数类型验证 @require_ints 类似请求前拦截 数据格式转换 将函数返回字典改为 JSON/YAML 类似响应后篡改 为函数提供额外的数据 mock.patch 函数注册 在任务中心注册一个任务 注册一个带信号处理器的函数 不同应用场景下装饰器实现 函数注册表 简单注册表 funcs = [] def register(func): funcs.append(func) return func @register def a(): r

  • 使用Python装饰器在Django框架下去除冗余代码的教程

    Python装饰器是一个消除冗余的强大工具.随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能. 例如让我们看看Django web框架,该框架处理请求的方法接收一个方法对象,返回一个响应对象: def handle_request(request): return HttpResponse("Hello, World") 我最近遇到一个案例,需要编写几个满足下述条件的api方法: 返回json响应 如果是GET请求,那么返回错误码 做为一个注册api

  • Python 装饰器实现DRY(不重复代码)原则

    Python装饰器是一个消除冗余的强大工具.随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能. 例如让我们看看Django web框架,该框架处理请求的方法接收一个方法对象,返回一个响应对象: def handle_request(request): return HttpResponse("Hello, World") 我最近遇到一个案例,需要编写几个满足下述条件的api方法: 返回json响应 如果是GET请求,那么返回错误码 做为一个注册api

  • python装饰器代码深入讲解

    python装饰器就是用于扩展原函数功能的一种函数,这个函数特殊的地方就是它的返回值也是一个函数,使用Python装饰器的一个好处就是:在不需要修改原函数代码的情况下,给函数增加新的功能. 先来看个例子: def say(): print('Nice day') say() # 这个函数的输出为: Nice day 现在,我想在输出Nice day的前面再打印一行****************,类似下面的效果: **************** Nice day 一般情况下,我可以修改上面的代

  • Python 装饰器代码解析

    前言: 以往看到我博客的小伙伴可能都知道,我的前言一般都是吐槽和讲废话环节,哈哈哈哈.今天难得休息,最近可真是太忙了,博主已经连续一年都在996了,所以最近没怎么学习新东西,只能回顾以往的旧知识了,上周一起工作的小伙伴扛不住996离职了,我们三人的小团队也正式解散了,哎.原本想着找时间好好整理一个关于关于接口自动化测试或ceph相关的东西.但由于篇幅过长这里目前可能不会着手写这方面东西.其实啊写是很简单的,主要例子难找.哈哈哈哈. 好了回归正题吧.看过我以往博客的小伙伴肯定见我用过@parame

  • python 装饰器(Decorators)原理说明及操作代码

    目录 1 必要的2个核心操作 1.1 核心操作1, 函数内部可以定义函数 1.2 核心操作2 函数可以作为对象被输入输出 1.2.1 核心操作2的前置条件,函数是对象 1.2.2函数作为输入 1.2.3 函数作为输出 2 尝试构造装饰器 3装饰器定义的简写 本文目的是由浅入深地介绍python装饰器原理 装饰器(Decorators)是 Python 的一个重要部分 其功能是,在不修改原函数(类)定义代码的情况下,增加新的功能 为了理解和实现装饰器,我们先引入2个核心操作: 1 必要的2个核心操

  • python装饰器代码解析

    目录 1.装饰器通用模型 2.多个装饰器装饰的函数执行 3.带参数的装饰器 4.类装饰器 1.装饰器通用模型 def wrapper(fn):     def inner(*args, **kwargs):         ret = fn(*args, **kwargs)         return ret     return inner 装饰器几个关键点: 1.函数可以当参数传递 2.函数可以作为返回值进行返回 3.函数名称可以当成变量一样进行赋值操作 装饰器本质上是个闭包,在不改变原有

  • 基于Python 装饰器装饰类中的方法实例

    title: Python 装饰器装饰类中的方法 comments: true date: 2017-04-17 20:44:31 tags: ['Python', 'Decorate'] category: ['Python'] --- 目前在中文网上能搜索到的绝大部分关于装饰器的教程,都在讲如何装饰一个普通的函数.本文介绍如何使用Python的装饰器装饰一个类的方法,同时在装饰器函数中调用类里面的其他方法.本文以捕获一个方法的异常为例来进行说明. 有一个类Test, 它的结构如下: clas

  • 深入了解Python装饰器的高级用法

    原文地址 https://www.codementor.io/python/tutorial/advanced-use-python-decorators-class-function 介绍 我写这篇文章的主要目的是介绍装饰器的高级用法.如果你对装饰器知之甚少,或者对本文讲到的知识点易混淆.我建议你复习下装饰器基础教程. 本教程的目标是介绍装饰器的一些有趣的用法.特别是怎样在类中使用装饰器,怎样给装饰器传递额外的参数. 装饰器 vs 装饰器模式 Decorator模式是一个面向对象的设计模式,它

随机推荐