剖析Python的Twisted框架的核心特性

一. reactor
twisted的核心是reactor,而提到reactor不可避免的是同步/异步,阻塞/非阻塞,在Dave的第一章概念性介绍中,对同步/异步的界限有点模糊,关于同步/异步,阻塞/非阻塞可参见知乎讨论。而关于proactor(主动器)和reactor(反应堆),这里有一篇推荐博客有比较详细的介绍。
就reactor模式的网络IO而言,应该是同步IO而不是异步IO。而Dave第一章中提到的异步,核心在于:显式地放弃对任务的控制权而不是被操作系统随机地停止,程序员必须将任务组织成序列来交替的小步完成。因此,若其中一个任务用到另外一个任务的输出,则依赖的任务(即接收输出的任务)需要被设计成为要接收系列比特或分片而不是一下全部接收。
显式主动地放弃任务的控制权有点类似协程的思考方式,reactor可看作协程的调度器。reactor是一个事件循环,我们可以向reactor注册自己感兴趣的事件(如套接字可读/可写)和处理器(如执行读写操作),reactor会在事件发生时回调我们的处理器,处理器执行完成之后,相当于协程挂起(yield),回到reactor的事件循环中,等待下一个事件来临并回调。reactor本身有一个同步事件多路分解器(Synchronous Event Demultiplexer),可用select/epoll等机制实现,当然twisted reactor的事件触发不一定是基于IO,也可以由定时器等其它机制触发。
twisted的reactor无需我们主动注册事件和回调函数,而是通过多态(继承特定类,并实现所关心的事件接口,然后传给twisted reactor)来实现。关于twisted的reactor,有几个需要注意的地方:
twisted.internet.reactor是单例模式,每个程序只能有一个reactor;
尽量在reactor回调函数尽快完成操作,不要执行阻塞任务,reactor本质是单线程,用户回调代码与twisted代码运行在同一个上下文,某个回调函数中阻塞,会导致reactor整个事件循环阻塞;
reactor会一直运行,除非通过reactor.stop()显示停止它,但一般调用reactor.stop(),也就意味着应用程序结束;

二. twisted简单使用
twisted的本质是reactor,我们可以使用twisted的底层API(避开twisted便利的高层抽象)来使用reactor:

# 示例一 twisted底层API的使用
from twisted.internet import reacto
from twisted.internet import main
from twisted.internet.interfaces import IReadDescriptor
import socket

class MySocket(IReadDescriptor):
  def __init__(self, address):
    # 连接服务器
    self.address = address
    self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    self.sock.connect(address)
    self.sock.setblocking(0)

    # tell the Twisted reactor to monitor this socket for reading
    reactor.addReader(self)

 # 接口: 告诉reactor 监听的套接字描述符
  def fileno(self):
    try:
      return self.sock.fileno()
    except socket.error:
      return -1

 # 接口: 在连接断开时的回调
  def connectionLost(self, reason):
    self.sock.close()

    reactor.removeReader(self)

 # 当应用程序需要终止时 调用:
    # reactor.stop()

 # 接口: 当套接字描述符有数据可读时
  def doRead(self):
    bytes = ''

 # 尽可能多的读取数据
    while True:
      try:
        bytesread = self.sock.recv(1024)
        if not bytesread:
          break
        else:
          bytes += bytesread
      except socket.error, e:
        if e.args[0] == errno.EWOULDBLOCK:
          break
        return main.CONNECTION_LOST

    if not bytes:
      return main.CONNECTION_DONE
    else:
      # 在这里解析协议并处理数据
      print bytes

示例一可以很清晰的看到twisted的reactor本质:添加监听描述符,监听可读/可写事件,当事件来临时回调函数,回调完成之后继续监听事件。
需要注意:
套接字为非阻塞,如果为阻塞则失去了reactor的意义
我们通过继承IReadDescriptor来提供reactor所需要的接口
通过reactor.addReader将套接字类加入reactor的监听对象中
main.CONNECTION_LOST是twisted预定义的值,通过这些值它我们可以一定程度控制下一步回调(类似于模拟一个事件)
但是上面的MySocket类不够好,主要有以下缺点:
需要我们自己去读取数据,而不是框架帮我们读好,并处理异常
网络IO和数据处理混为一块,没有剥离开来

三. twisted抽象
twisted在reactor的基础上,建立了更高的抽象,对一个网络连接而言,twisted建立了如下三个概念:
Transports:网络连接层,仅负责网络连接和读/写字节数据
Protocols: 协议层,服务业务相关的网络协议,将字节流转换成应用所需数据
Protocol Factories:协议工厂,负责创建Protocols,每个网络连接都有一个Protocols对象(因为要保存协议解析状态)
twisted的这些概念和erlang中的ranch网络框架很像,ranch框架也抽象了Transports和Protocols概念,在有新的网络连接时,ranch自动创建Transports和Protocols,其中Protocols由用户在启动ranch时传入,是一个实现了ranch_protocol behaviour的模块,Protocols初始化时,会收到该连接对应的Transports,如此我们可以在Protocols中处理字节流数据,按照我们的协议解析并处理数据。同时可通过Transports来发送数据(ranch已经帮你读取了字节流数据了)。
和ranch类似,twisted也会在新连接到达时创建Protocols并且将Transport传入,twisted会帮我们读取字节流数据,我们只需在dataReceived(self, data)接口中处理字节流数据即可。此时的twisted在网络IO上可以算是真正的异步了,它帮我们处理了网络IO和可能遇到的异常,并且将网络IO和数据处理剥离开来,抽象为Transports和Protocols,提高了程序的清晰性和健壮性。

# 示例二 twisted抽象的使用
from twisted.internet import reactor
from twisted.internet.protocol import Protocol, ClientFactory
class MyProtocol(Protocol):

 # 接口: Protocols初始化时调用,并传入Transports
 # 另外 twisted会自动将Protocols的factory对象成员设为ProtocolsFactory实例的引用
 #   如此就可以通过factory来与MyProtocolFactory交互
 def makeConnection(self,trans):
    print 'make connection: get transport: ', trans
    print 'my factory is: ', self.factory

 # 接口: 有数据到达
  def dataReceived(self, data):
    self.poem += data
    msg = 'Task %d: got %d bytes of poetry from %s'
    print msg % (self.task_num, len(data), self.transport.getPeer())

 # 接口: 连接断开
  def connectionLost(self, reason):
    # 连接断开的处理

class MyProtocolFactory(ClientFactory):

 # 接口: 通过protocol类成员指出需要创建的Protocols
  protocol = PoetryProtocol # tell base class what proto to build

  def __init__(self, address):
    self.poetry_count = poetry_count
    self.poems = {} # task num -> poem

 # 接口: 在创建Protocols的回调
  def buildProtocol(self, address):
    proto = ClientFactory.buildProtocol(self, address)
    # 在这里对proto做一些初始化....
    return proto

 # 接口: 连接Server失败时的回调
  def clientConnectionFailed(self, connector, reason):
    print 'Failed to connect to:', connector.getDestination()

def main(address):
 factory = MyClientFactory(address)
  host, port = address
  # 连接服务端时传入ProtocolsFactory
  reactor.connectTCP(host, port, factory)
  reactor.run()

示例二要比示例一要简单清晰很多,因为它无需处理网络IO,并且逻辑上更为清晰,实际上ClientFactory和Protocol提供了更多的接口用于实现更灵活强大的逻辑控制,具体的接口可参见twisted源代码。

四. twisted Deferred
twisted Deferred对象用于解决这样的问题:有时候我们需要在ProtocolsFactory中嵌入自己的回调,以便Protocols中发生某个事件(如所有Protocols都处理完成)时,回调我们指定的函数(如TaskFinished)。如果我们自己来实现回调,需要处理几个问题:
如何区分回调的正确返回和错误返回?(我们在使用异步调用时,要尤其注意错误返回的重要性)
如果我们的正确返回和错误返回都需要执行一个公共函数(如关闭连接)呢?
如果保证该回调只被调用一次?
Deferred对象便用于解决这种问题,它提供两个回调链,分别对应于正确返回和错误返回,在正确返回或错误返回时,它会依次调用对应链中的函数,并且保证回调的唯一性。

d = Deferred()
# 添加正确回调和错误回调
d.addCallbacks(your_ok_callback, your_err_callback)
# 添加公共回调函数
d.addBoth(your_common_callback)

# 正确返回 将依次调用 your_ok_callback(Res) -> common_callback(Res)
d.callback(Res)
# 错误返回 将依次调用 your_err_callback(Err) -> common_callback(Err)
d.errback(Err)

# 注意,对同一个Defered对象,只能返回一次,尝试多次返回将会报错

twisted的defer是异步的一种变现方式,可以这么理解,他和thread的区别是,他是基于时间event的。
有了deferred,即可对任务的执行进行管理控制。防止程序的运行,由于等待某项任务的完成而陷入阻塞停滞,提高整体运行的效率。
Deferred能帮助你编写异步代码,但并不是为自动生成异步或无阻塞的代码!要想将一个同步函数编程异步函数,必须在函数中返回Deferred并正确注册回调。

五.综合示例

下面的例子,你们自己跑跑,我上面说的都是一些个零散的例子,大家对照下面完整的,走一遍。 twisted理解其实却是有点麻烦,大家只要知道他是基于事件的后,慢慢理解就行了。

#coding:utf-8
#xiaorui.cc
from twisted.internet import reactor, defer
from twisted.internet.threads import deferToThread
import os,sys
from twisted.python import threadable; threadable.init(1)
deferred =deferToThread.__get__
import time
def todoprint_(result):
  print result
def running():
  "Prints a few dots on stdout while the reactor is running."
#   sys.stdout.write("."); sys.stdout.flush()
  print '.'
  reactor.callLater(.1, running)
@deferred
def sleep(sec):
  "A blocking function magically converted in a non-blocking one."
  print 'start sleep %s'%sec
  time.sleep(sec)
  print '\nend sleep %s'%sec
  return "ok"
def test(n,m):
  print "fun test() is start"
  m=m
  vals = []
  keys = []
  for i in xrange(m):
    vals.append(i)
    keys.append('a%s'%i)
  d = None
  for i in xrange(n):
    d = dict(zip(keys, vals))
  print "fun test() is end"
  return d
if __name__== "__main__":
#one
  sleep(10).addBoth(todoprint_)
  reactor.callLater(.1, running)
  reactor.callLater(3, reactor.stop)
  print "go go !!!"
  reactor.run()
#two
  aa=time.time()
  de = defer.Deferred()
  de.addCallback(test)
  reactor.callInThread(de.callback,10000000,100 )
  print time.time()-aa
  print "我这里先做别的事情"
  print de
  print "go go end"
(0)

相关推荐

  • 使用Python的Twisted框架构建非阻塞下载程序的实例教程

    第一个twisted支持的诗歌服务器 尽管Twisted大多数情况下用来写服务器代码,但为了一开始尽量从简单处着手,我们首先从简单的客户端讲起. 让我们来试试使用Twisted的客户端.源码在twisted-client-1/get-poetry.py.首先像前面一样要开启三个服务器: python blocking-server/slowpoetry.py --port 10000 poetry/ecstasy.txt --num-bytes 30 python blocking-server

  • Python基于twisted实现简单的web服务器

    本文实例讲述了Python基于twisted实现简单的web服务器,分享给大家供大家参考.具体方法如下: 1. 新建htm文件夹,在这个文件夹中放入显示的网页文件 2. 在htm文件夹的同级目录下,建立web.py,web.py的内容为: from twisted.web.resource import Resource from twisted.web import server from twisted.web import static from twisted.internet impo

  • 使用Python的Treq on Twisted来进行HTTP压力测试

    从事API相关的工作很有挑战性,在高峰期保持系统的稳定及健壮性就是其中之一,这也是我们在Mailgun做很多压力测试的原因. 这么久以来,我们已经尝试了很多种方法,从简单的ApacheBench到复杂些的自定义测试套.但是本贴讲述的,是一种使用python进行"快速粗糙"却非常灵活的压力测试的方法. 使用python写HTTP客户端的时候,我们都很喜欢用 Requests library.这也是我们向我们的API用户们推荐的.Requests 很强大,但有一个缺点,它是一个模块化的每线

  • python 编程之twisted详解及简单实例

    python 编程之twisted详解 前言: 我不擅长写socket代码.一是用c写起来比较麻烦,二是自己平时也没有这方面的需求.等到自己真正想了解的时候,才发现自己在这方面确实有需要改进的地方.最近由于项目的原因需要写一些Python代码,才发现在python下面开发socket是一件多么爽的事情. 对于大多数socket来说,用户其实只要关注三个事件就可以了.这分别是创建.删除.和收发数据.python中的twisted库正好可以帮助我们完成这么一个目标,实用起来也不麻烦.下面的代码来自t

  • 实例解析Python的Twisted框架中Deferred对象的用法

    Deferred对象结构 Deferred由一系列成对的回调链组成,每一对都包含一个用于处理成功的回调(callbacks)和一个用于处理错误的回调(errbacks).初始状态下,deffereds将由两个空回调链组成.在向其中添加回调时将总是成对添加.当异步处理中的结果返回时,Deferred将会启动并以添加时的顺序触发回调链. 用实例也许更容易说明,首先来看看addCallback: from twisted.internet.defer import Deferred def myCal

  • 使用Python的Twisted框架编写非阻塞程序的代码示例

    先来看一段代码: # ~*~ Twisted - A Python tale ~*~ from time import sleep # Hello, I'm a developer and I mainly setup Wordpress. def install_wordpress(customer): # Our hosting company Threads Ltd. is bad. I start installation and... print "Start installation

  • Python下的twisted框架入门指引

    什么是twisted? twisted是一个用python语言写的事件驱动的网络框架,他支持很多种协议,包括UDP,TCP,TLS和其他应用层协议,比如HTTP,SMTP,NNTM,IRC,XMPP/Jabber. 非常好的一点是twisted实现和很多应用层的协议,开发人员可以直接只用这些协议的实现.其实要修改Twisted的SSH服务器端实现非常简单.很多时候,开发人员需要实现protocol类. 一个Twisted程序由reactor发起的主循环和一些回调函数组成.当事件发生了,比如一个c

  • 详解Python的Twisted框架中reactor事件管理器的用法

    铺垫 在大量的实践中,似乎我们总是通过类似的方式来使用异步编程: 监听事件 事件发生执行对应的回调函数 回调完成(可能产生新的事件添加进监听队列) 回到1,监听事件 因此我们将这样的异步模式称为Reactor模式,例如在iOS开发中的Run Loop概念,实际上非常类似于Reactor loop,主线程的Run Loop监听屏幕UI事件,一旦发生UI事件则执行对应的事件处理代码,还可以通过GCD等方式产生事件至主线程执行. 上图是boost对Reactor模式的描绘,Twisted的设计就是基于

  • 使用Python的Twisted框架编写简单的网络客户端

    Protocol   和服务器一样,也是通过该类来实现.先看一个简短的例程: from twisted.internet.protocol import Protocol from sys import stdout class Echo(Protocol): def dataReceived(self, data): stdout.write(data) 在本程序中,只是简单的将获得的数据输出到标准输出中来显示,还有很多其他的事件没有作出任何响应,下面 有一个回应其他事件的例子: from t

  • 使用Python的Twisted框架实现一个简单的服务器

    预览   twisted是一个被设计的非常灵活框架以至于能够让你写出非常强大的服务器.这种灵活的代价是需要好通过好几个层次来实现你的服务器, 本文档描述的是Protocol层,你将在这个层次中执行协议的分析和处理,如果你正在执行一个应用程序,那么你应该在读过top level的为twisted写插件一节中的怎样开始写twisted应用程序之后阅读本章.这个文档只是和TCP,SSL和Unix套接字服务器有关,同时也将有另一份文档专门讲解UDP.   你的协议处理类通常是twisted.intern

  • Python的Twisted框架上手前所必须了解的异步编程思想

    前言 最近有人在Twisted邮件列表中提出诸如"为任务紧急的人提供一份Twisted介绍"的需求.值得提前透露的是,这个系列并不会如他们所愿.尤其是介绍Twisted框架和基于Python 的异步编程而言,可能短时间无法讲清楚.因此,如果你时间紧急,这恐怕不是你想找的资料. 我相信如果对异步编程模型一无所知,快速的介绍同样无法让你对其有所理解,至少你得稍微懂点基础知识吧.我已经用Twisted框架几年了,因此思考过我当初是怎么学习它(学得很慢)并发现学习它的最大难度并不在Twiste

  • Python 基于Twisted框架的文件夹网络传输源码

    由于文件夹可能有多层目录,因此需要对其进行递归遍历. 本文采取了简单的协议定制,定义了五条命令,指令Head如下: Sync:标识开始同步文件夹 End:标识结束同步 File:标识传输的文件名(相对路径) Folder:标志文件夹(相对路径) None:文件内容 每条命令以CMB_BEGIN开始,以CMB_END结束. 客户端需要对接收缓冲做解析,取出一条一条的指令,然后根据指令的Head做相应的处理,比如创建文件夹.写入文件等. 下面是服务端的代码: from twisted.interne

  • 利用Python的Twisted框架实现webshell密码扫描器的教程

    好久以来都一直想学习windows中得iocp技术,即异步通信,但是经过长时间研究别人的c++版本,发现过于深奥了,有点吃力,不过幸好python中的twisted技术的存在方便了我. iocp即异步通信技术,是windows系统中现在效率最高的一种选择,异步通信顾名思义即与同步通信相对,我们平时写的类似socket.connect  accept等都属于此范畴,同样python中得urlopen也是同步的(为什么提这个,是因为和后面的具体实现有关),总而言之,我们平时写的绝大多数socket,

  • Python的Twisted框架中使用Deferred对象来管理回调函数

    首先抛出我们在讨论使用回调编程时的一些观点: 激活errback是非常重要的.由于errback的功能与except块相同,因此用户需要确保它们的存在.他们并不是可选项,而是必选项. 不在错误的时间点激活回调与在正确的时间点激活回调同等重要.典型的用法是,callback与errback是互斥的即只能运行其中一个. 使用回调函数的代码重构起来有些困难. Deferred Twisted使用Deferred对象来管理回调函数的序列.有些情况下可能要把一系列的函数关联到Deferred对象上,以便在

随机推荐