python并发编程之多进程、多线程、异步和协程详解

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。
一、多线程

多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果。

多线程相当于一个并发(concunrrency)系统。并发系统一般同时执行多个任务。如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完,另一个指令,多个窗口同时卖票,可能出现卖出不存在的票。

在并发情况下,指令执行的先后顺序由内核决定。同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清除哪一个会先执行。因此要考虑多线程同步的问题。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。

1、thread模块

2、threading模块
threading.Thread 创建一个线程。

给判断是否有余票和卖票,加上互斥锁,这样就不会造成一个线程刚判断没有余票,而另外一个线程就执行卖票操作。

#! /usr/bin/python
#-* coding: utf-8 -*
# __author__ ="tyomcat"
import threading
import time
import os

def booth(tid):
  global i
  global lock
  while True:
    lock.acquire()
    if i!=0:
      i=i-1
      print "窗口:",tid,",剩余票数:",i
      time.sleep(1)
    else:
      print "Thread_id",tid,"No more tickets"
      os._exit(0)
    lock.release()
    time.sleep(1)

i = 100
lock=threading.Lock()

for k in range(10):

  new_thread = threading.Thread(target=booth,args=(k,))
  new_thread.start()

二、协程(又称微线程,纤程)

协程,与线程的抢占式调度不同,它是协作式调度。协程也是单线程,但是它能让原来要使用异步+回调方式写的非人类代码,可以用看似同步的方式写出来。

1、协程在python中可以由生成器(generator)来实现。

首先要对生成器和yield有一个扎实的理解.

调用一个普通的python函数,一般是从函数的第一行代码开始执行,结束于return语句、异常或者函数执行(也可以认为是隐式地返回了None)。

一旦函数将控制权交还给调用者,就意味着全部结束。而有时可以创建能产生一个序列的函数,来“保存自己的工作”,这就是生成器(使用了yield关键字的函数)。

能够“产生一个序列”是因为函数并没有像通常意义那样返回。return隐含的意思是函数正将执行代码的控制权返回给函数被调用的地方。而"yield"的隐含意思是控制权的转移是临时和自愿的,我们的函数将来还会收回控制权。

看一下生产者/消费者的例子:

#! /usr/bin/python
#-* coding: utf-8 -*
# __author__ ="tyomcat"
import time
import sys
# 生产者
def produce(l):
  i=0
  while 1:
    if i < 10:
      l.append(i)
      yield i
      i=i+1
      time.sleep(1)
    else:
      return
# 消费者
def consume(l):
  p = produce(l)
  while 1:
    try:
      p.next()
      while len(l) > 0:
        print l.pop()
    except StopIteration:
      sys.exit(0)
if __name__ == "__main__":
  l = []
  consume(l)

当程序执行到produce的yield i时,返回了一个generator并暂停执行,当我们在custom中调用p.next(),程序又返回到produce的yield i 继续执行,这样 l 中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

2、Stackless Python

3、greenlet模块

基于greenlet的实现则性能仅次于Stackless Python,大致比Stackless Python慢一倍,比其他方案快接近一个数量级。其实greenlet不是一种真正的并发机制,而是在同一线程内,在不同函数的执行代码块之间切换,实施“你运行一会、我运行一会”,并且在进行切换时必须指定何时切换以及切换到哪。

4、eventlet模块

三、多进程
1、子进程(subprocess包)

在python中,通过subprocess包,fork一个子进程,并运行外部程序。

调用系统的命令的时候,最先考虑的os模块。用os.system()和os.popen()来进行操作。但是这两个命令过于简单,不能完成一些复杂的操作,如给运行的命令提供输入或者读取命令的输出,判断该命令的运行状态,管理多个命令的并行等等。这时subprocess中的Popen命令就能有效的完成我们需要的操作

>>>import subprocess
>>>command_line=raw_input()
ping -c 10 www.baidu.com
>>>args=shlex.split(command_line)
>>>p=subprocess.Popen(args)

利用subprocess.PIPE将多个子进程的输入和输出连接在一起,构成管道(pipe):

import subprocess
child1 = subprocess.Popen(["ls","-l"], stdout=subprocess.PIPE)
child2 = subprocess.Popen(["wc"], stdin=child1.stdout,stdout=subprocess.PIPE)
out = child2.communicate()
print(out)

communicate() 方法从stdout和stderr中读出数据,并输入到stdin中。

2、多进程(multiprocessing包)

(1)、multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。

进程池 (Process Pool)可以创建多个进程。

apply_async(func,args)  从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。

close()  进程池不再创建新的进程

join()   wait进程池中的全部进程。必须对Pool先调用close()方法才能join。

#! /usr/bin/env python
# -*- coding:utf-8  -*-
# __author__ == "tyomcat"
# "我的电脑有4个cpu"

from multiprocessing import Pool
import os, time

def long_time_task(name):
  print 'Run task %s (%s)...' % (name, os.getpid())
  start = time.time()
  time.sleep(3)
  end = time.time()
  print 'Task %s runs %0.2f seconds.' % (name, (end - start))

if __name__=='__main__':
  print 'Parent process %s.' % os.getpid()
  p = Pool()
  for i in range(4):
    p.apply_async(long_time_task, args=(i,))
  print 'Waiting for all subprocesses done...'
  p.close()
  p.join()
  print 'All subprocesses done.'

(2)、多进程共享资源

通过共享内存和Manager对象:用一个进程作为服务器,建立Manager来真正存放资源。

其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。

#! /usr/bin/env python
# -*- coding:utf-8  -*-
# __author__ == "tyomcat"

from multiprocessing import Queue,Pool
import multiprocessing,time,random

def write(q):

  for value in ['A','B','C','D']:
    print "Put %s to Queue!" % value
    q.put(value)
    time.sleep(random.random())

def read(q,lock):
  while True:
    lock.acquire()
    if not q.empty():
      value=q.get(True)
      print "Get %s from Queue" % value
      time.sleep(random.random())
    else:
      break
    lock.release()

if __name__ == "__main__":
  manager=multiprocessing.Manager()
  q=manager.Queue()
  p=Pool()
  lock=manager.Lock()
  pw=p.apply_async(write,args=(q,))
  pr=p.apply_async(read,args=(q,lock))
  p.close()
  p.join()
  print
  print "所有数据都写入并且读完"

四、异步

无论是线程还是进程,使用的都是同步进制,当发生阻塞时,性能会大幅度降低,无法充分利用CPU潜力,浪费硬件投资,更重要造成软件模块的铁板化,紧耦合,无法切割,不利于日后扩展和变化。

不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。多个线程之间在一些访问互斥的代码时还需要加上锁,

现下流行的异步server都是基于事件驱动的(如nginx)。

异步事件驱动模型中,把会导致阻塞的操作转化为一个异步操作,主线程负责发起这个异步操作,并处理这个异步操作的结果。由于所有阻塞的操作都转化为异步操作,理论上主线程的大部分时间都是在处理实际的计算任务,少了多线程的调度时间,所以这种模型的性能通常会比较好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python 多进程并发操作中进程池Pool的实例

    在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了. Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到规定

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • 深入浅析python中的多进程、多线程、协程

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构--进程控制块. 进程就是一个程序在一个数据集上的一次动态执行过程. 进程一般由程序.数据集.进程控

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • 详解python之多进程和进程池(Processing库)

    环境:win7+python2.7 一直想学习多进程或多线程,但之前只是单纯看一点基础知识还有简单的介绍,无法理解怎么去应用,直到前段时间看了github的一个爬虫项目涉及到多进程,多线程相关内容,一边看一边百度相关知识点,现在把一些相关知识点和一些应用写下来做个记录. 首先说下什么是进程:进程是程序在计算机上的一次执行活动,当运行一个程序的时候,就启动了一个进程.而进程又分为系统进程和用户进程.只要是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身;而所有由你

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • python并发编程 Process对象的其他属性方法join方法详解

    一 Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一: 在主进程的任务与子进程的任务彼此独立的情况下,主进程的任务先执行完毕后,主进程还需要等待子进程执行完毕,然后统一回收资源. 这种是没有join方法 情况二: 如果主进程的任务在执行到某一个阶段时,需要等待子进程执行完毕后才能继续执行, 就需要有一种机制能够让主进程检测子进程是否运行完毕,在子进程执行完毕后才继续执行,否则一直在原地阻塞,这就是

  • Python并发编程队列与多线程最快发送http请求方式

    目录 队列+多线程 线程池 协程 + aiohttp grequests 最后的话 Python 并发编程有很多方法,多线程的标准库 threading,concurrency,协程 asyncio,当然还有 grequests 这种异步库,每一个都可以实现上述需求,下面一一用代码实现一下,本文的代码可以直接运行,给你以后的并发编程作为参考: 队列+多线程 定义一个大小为 400 的队列,然后开启 200 个线程,每个线程都是不断的从队列中获取 url 并访问. 主线程读取文件中的 url 放入

  • java并发编程关键字volatile保证可见性不保证原子性详解

    目录 关于可见性 关于指令重排 volatile关键字可以说是Java虚拟机提供的最轻量级的同步机制,但对于为什么它只能保证可见性,不保证原子性,它又是如何禁用指令重排的,还有很多同学没彻底理解 相信我,坚持看完这篇文章,你将牢牢掌握一个Java核心知识点 先说它的两个作用: 保证变量在内存中对线程的可见性禁用指令重排 每个字都认识,凑在一起就麻了 这两个作用通常很不容易被我们Java开发人员正确.完整地理解,以至于许多同学不能正确地使用volatile 关于可见性 不多bb,码来 public

  • 详解Python并发编程之创建多线程的几种方法

    大家好,并发编程 今天开始进入第二篇. 今天的内容会比较基础,主要是为了让新手也能无障碍地阅读,所以还是要再巩固下基础.学完了基础,你们也就能很顺畅地跟着我的思路理解以后的文章. 本文目录 学会使用函数创建多线程 学会使用类创建多线程 多线程:必学函数讲解 经过总结,Python创建多线程主要有如下两种方法: 函数 类 接下来,我们就来揭开多线程的神秘面纱. . 学会使用函数创建多线程 在Python3中,Python提供了一个内置模块 threading.Thread,可以很方便地让我们创建多

  • python网络编程socket实现服务端、客户端操作详解

    本文实例讲述了python网络编程socket实现服务端.客户端操作.分享给大家供大家参考,具体如下: 本文内容: socket介绍 TCP: 服务端 客户端 UDP: 服务端 客户端 首发时间:2018-02-08 01:14 修改: 2018-03-20 :重置了布局,增加了UDP 什么是socket: socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求. 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为

  • Python GUI编程学习笔记之tkinter事件绑定操作详解

    本文实例讲述了Python GUI编程学习笔记之tkinter事件绑定操作.分享给大家供大家参考,具体如下: 相关内容: command bind protocol 首发时间:2018-03-04 19:26 command: command是控件中的一个参数,如果使得command=函数,那么点击控件的时候将会触发函数 能够定义command的常见控件有: Button.Menu- 调用函数时,默认是没有参数传入的,如果要强制传入参数,可以考虑使用lambda from tkinter imp

  • Python GUI编程学习笔记之tkinter界面布局显示详解

    本文实例讲述了Python GUI编程学习笔记之tkinter界面布局显示.分享给大家供大家参考,具体如下: 相关内容: pack 介绍 常用参数 使用情况 常用函数 grid 介绍 常用参数 使用情况 常用函数 place 介绍 常用参数 使用情况 常用函数 首发时间:2018-03-04 14:20 pack: 介绍: pack几何管理器按行或列打包小部件. 可以使用填充fill,展开expand和靠边side等选项来控制此几何体管理器. pack的排放控件的形式就像将一个个控件按大小从上到

  • python线程、进程和协程详解

    引言 解释器环境:python3.5.1 我们都知道python网络编程的两大必学模块socket和socketserver,其中的socketserver是一个支持IO多路复用和多线程.多进程的模块.一般我们在socketserver服务端代码中都会写这么一句: server = socketserver.ThreadingTCPServer(settings.IP_PORT, MyServer) ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver

  • Python进阶之协程详解

    目录 协程 协程的应用场景 抢占式调度的缺点 用户态协同调度的优势 协程的运行原理 Python 中的协程 总结 协程 协程(co-routine,又称微线程)是一种多方协同的工作方式.当前执行者在某个时刻主动让出(yield)控制流,并记住自身当前的状态,以便在控制流返回时能从上次让出的位置恢复(resume)执行. 简而言之,协程的核心思想就在于执行者对控制流的 “主动让出” 和 “恢复”.相对于,线程此类的 “抢占式调度” 而言,协程是一种 “协作式调度” 方式. 协程的应用场景 抢占式调

随机推荐