c#泛型学习详解 创建线性链表

术语表

generics:泛型
type-safe:类型安全
collection: 集合
compiler:编译器
run time:程序运行时
object: 对象
.NET library:.Net类库
value type: 值类型
box: 装箱
unbox: 拆箱
implicity: 隐式
explicity: 显式
linked list: 线性链表
node: 结点
indexer: 索引器

泛型是什么?

很多人觉得泛型很难理解。我相信这是因为他们通常在了解泛型是用来解决什么问题之前,就被灌输了大量的理论和范例。结果就是你有了一个解决方案,但是却没有需要使用这个解决方案的问题。

这篇文章将尝试着改变这种学习流程,我们将以一个简单的问题作为开始:泛型是用来做什么的?答案是:没有泛型,将会很难创建类型安全的集合。

C# 是一个类型安全的语言,类型安全允许编译器(可信赖地)捕获潜在的错误,而不是在程序运行时才发现(不可信赖地,往往发生在你将产品出售了以后!)。因 此,在C#中,所有的变量都有一个定义了的类型;当你将一个对象赋值给那个变量的时候,编译器检查这个赋值是否正确,如果有问题,将会给出错误信息。

在 .Net 1.1 版本(2003)中,当你在使用集合时,这种类型安全就失效了。由.Net 类库提供的所有关于集合的类全是用来存储基类型(Object)的,而.Net中所有的一切都是由Object基类继承下来的,因此所有类型都可以放到一 个集合中。于是,相当于根本就没有了类型检测。

更糟的是,每一次你从集合中取出一个Object,你都必须将它强制转换成正确的类型,这一转换将对性能造成影响,并且产生冗长的代码(如果你忘了 进行转换,将会抛出异常)。更进一步地讲,如果你给集合中添加一个值类型(比如,一个整型变量),这个整型变量就被隐式地装箱了(再一次降低了性能),而 当你从集合中取出它的时候,又会进行一次显式地拆箱(又一次性能的降低和类型转换)。

关于装箱、拆箱的更多内容,请访问 陷阱4,警惕隐式的装箱、拆箱。

创建一个简单的线性链表

为了生动地感受一下这些问题,我们将创建一个尽可能简单的线性链表。对于阅读本文的那些从未创建过线性链表的人。你可以将线性链表想像成有一条链子 栓在一起的盒子(称作一个结点),每个盒子里包含着一些数据 和 链接到这个链子上的下一个盒子的引用(当然,除了最后一个盒子,这个盒子对于下一个盒子的引用被设置成NULL)。

为了创建我们的简单线性链表,我们需要下面三个类:

1、Node 类,包含数据以及下一个Node的引用。

2、LinkedList 类,包含链表中的第一个Node,以及关于链表的任何附加信息。

3、测试程序,用于测试 LinkedList 类。

为了查看链接表如何运作,我们添加Objects的两种类型到链表中:整型 和 Employee类型。你可以将Employee类型想象成一个包含关于公司中某一个员工所有信息的类。出于演示的目的,Employee类非常的简单。


代码如下:

public class Employee{
  private string name;
  public Employee (string name){
    this.name = name;
  }

  public override string ToString(){
   return this.name;
  }
}

这个类仅包含一个表示员工名字的字符串类型,一个设置员工名字的构造函数,一个返回Employee名字的ToString()方法。

链接表本身是由很多的Node构成,这些Note,如上面所说,必须包含数据(整型 和 Employee)和链表中下一个Node的引用。


代码如下:

public class Node{
    Object data;
    Node next;

public Node(Object data){
       this.data = data;
       this.next = null;
    }

public Object Data{
       get { return this.data; }
       set { data = value; }
    }

public Node Next{
        get { return this.next; }
       set { this.next = value; }
    }
}

注意构造函数将私有的数据成员设置成传递进来的对象,并且将 next 字段设置成null。

这个类还包括一个方法,Append,这个方法接受一个Node类型的参数,我们将把传递进来的Node添加到列表中的最后位置。这过程是这样的: 首先检测当前Node的next字段,看它是不是null。如果是,那么当前Node就是最后一个Node,我们将当前Node的next属性指向传递进 来的新结点,这样,我们就把新Node插入到了链表的尾部。

如果当前Node的next字段不是null,说明当前node不是链表中的最后一个node。因为next字段的类型也是node,所以我们调用next字段的Append方法(注:递归调用),再一次传递Node参数,这样继续下去,直到找到最后一个Node为止。


代码如下:

public void Append(Node newNode){
    if ( this.next == null ){
       this.next = newNode;
    }else{
       next.Append(newNode);
    }
}

Node 类中的 ToString() 方法也被覆盖了,用于输出 data 中的值,并且调用下一个 Node 的 ToString()方法(译注:再一次递归调用)。


代码如下:

public override string ToString(){
    string output = data.ToString();

if ( next != null ){
       output += ", " + next.ToString();
    }

return output;
}

这样,当你调用第一个Node的ToString()方法时,将打印出所有链表上Node的值。

LinkedList 类本身只包含对一个Node的引用,这个Node称作 HeadNode,是链表中的第一个Node,初始化为null。


代码如下:

public class LinkedList{
    Node headNode = null;
}

LinkedList 类不需要构造函数(使用编译器创建的默认构造函数),但是我们需要创建一个公共方法,Add(),这个方法把 data存储到线性链表中。这个方法首先检查headNode是不是null,如果是,它将使用data创建结点,并将这个结点作为headNode,如 果不是null,它将创建一个新的包含data的结点,并调用headNode的Append方法,如下面的代码所示:


代码如下:

public void Add(Object data){
    if ( headNode == null ){
       headNode = new Node(data);
    }else{
       headNode.Append(new Node(data));
    }
}

为了提供一点集合的感觉,我们为线性链表创建一个索引器。


代码如下:

public object this[ int index ]{
    get{
       int ctr = 0;
       Node node = headNode;
       while ( node != null  && ctr <= index ){
           if ( ctr == index ){
              return node.Data;
           }else{
              node = node.Next;
           }
           ctr++;
        }
    return null;
    }
}

最后,ToString()方法再一次被覆盖,用以调用headNode的ToString()方法。


代码如下:

public override string ToString(){
    if ( this.headNode != null ){
       return this.headNode.ToString();
    }else{
       return string.Empty;
    }
}

测试线性链表

我们可以添加一些整型值到链表中进行测试:


代码如下:

public void Run(){
    LinkedList ll = new LinkedList();
    for ( int i = 0; i < 10; i ++ ){
       ll.Add(i);
    }

Console.WriteLine(ll);
    Console.WriteLine("  Done. Adding employees...");
}

如果你对这段代码进行测试,它会如预计的那样工作:


代码如下:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Done. Adding employees...

然而,因为这是一个Object类型的集合,所以你同样可以将Employee类型添加到集合中。


代码如下:

ll.Add(new Employee("John"));
ll.Add(new Employee("Paul"));
ll.Add(new Employee("George"));
ll.Add(new Employee("Ringo"));

Console.WriteLine(ll);
Console.WriteLine("  Done.");

输出的结果证实了,整型值和Employee类型都被存储在了同一个集合中。


代码如下:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
  Done. Adding employees...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, John, Paul, George, Ringo
Done.

虽然看上去这样很方便,但是负面影响是,你失去了所有类型安全的特性。因为线性链表需要的是一个Object类型,每一个添加到集合中的整型值都被隐式装箱了,如同 IL 代码所示:


代码如下:

IL_000c:  box        [mscorlib]System.Int32
IL_0011:  callvirt   instance void ObjectLinkedList.LinkedList::Add(object)

同样,如果上面所说,当你从你的列表中取出项目的时候,这些整型必须被显式地拆箱(强制转换成整型),Employee类型必须被强制转换成 Employee类型。


代码如下:

Console.WriteLine("The fourth integer is " + Convert.ToInt32(ll[3]));
Employee d = (Employee) ll[11];
Console.WriteLine("The second Employee is " + d);

这些问题的解决方案是创建一个类型安全的集合。一个 Employee 线性链表将不能接受 Object 类型;它只接受 Employee类的实例(或者继承自Employee类的实例)。这样将会是类型安全的,并且不再需要类型转换。一个 整型的 线性链表,这个链表将不再需要装箱和拆箱的操作(因为它只能接受整型值)。

作为示例,你将创建一个 EmployeeNode,该结点知道它的data的类型是Employee。


代码如下:

public class EmployeeNode {
    Employee employeedata;
    EmployeeNode employeeNext;
}

Append 方法现在接受一个 EmployeeNode 类型的参数。你同样需要创建一个新的 EmployeeLinkedList ,这个链表接受一个新的 EmployeeNode:


代码如下:

public class EmployeeLinkedList{
    EmployeeNode headNode = null;
}

EmployeeLinkedList.Add()方法不再接受一个 Object,而是接受一个Employee:


代码如下:

public void Add(Employee data){
    if ( headNode == null ){
       headNode = new EmployeeNode(data);}
    else{
       headNode.Append(new EmployeeNode(data));
    }
}

类似的,索引器必须被修改成接受 EmployeeNode 类型,等等。这样确实解决了装箱、拆箱的问题,并且加入了类型安全的特性。你现在可以添加Employee(但不是整型)到你新的线性链表中了,并且当你从中取出Employee的时候,不再需要类型转换了。


代码如下:

EmployeeLinkedList employees = new EmployeeLinkedList();
employees.Add(new Employee("Stephen King"));
employees.Add(new Employee("James Joyce"));
employees.Add(new Employee("William Faulkner"));
/* employees.Add(5);  // try to add an integer - won't compile */
Console.WriteLine(employees);
Employee e = employees[1];
Console.WriteLine("The second Employee is " + e);

这样多好啊,当有一个整型试图隐式地转换到Employee类型时,代码甚至连编译器都不能通过!

但它不好的地方是:每次你需要创建一个类型安全的列表时,你都需要做很多的复制/粘贴 。一点也不够好,一点也没有代码重用。同时,如果你是这个类的作者,你甚至不能提前欲知这个链接列表所应该接受的类型是什么,所以,你不得不将添加类型安 全这一机制的工作交给类的使用者---你的用户。

使用泛型来达到代码重用

解决方案,如同你所猜想的那样,就是使用泛型。通过泛型,你重新获得了链接列表的   代码通用(对于所有类型只用实现一次),而当你初始化链表的时候你告诉链表所能接受的类型。这个实现是非常简单的,让我们重新回到Node类:


代码如下:

public class Node{
    Object data;
    ...

注意到 data 的类型是Object,(在EmployeeNode中,它是Employee)。我们将把它变成一个泛型(通常,由一个大写的T代表)。我们同样定义Node类,表示它可以被泛型化,以接受一个T类型。


代码如下:

public class Node <T>{
    T data;
    ...

读作:T类型的Node。T代表了当Node被初始化时,Node所接受的类型。T可以是Object,也可能是整型或者是Employee。这个在Node被初始化的时候才能确定。

注意:使用T作为标识只是一种约定俗成,你可以使用其他的字母组合来代替,比如这样:


代码如下:

public class Node <UnknownType>{
    UnknownType data;
    ...

通过使用T作为未知类型,next字段(下一个结点的引用)必须被声明为T类型的Node(意思是说接受一个T类型的泛型化Node)。

Node<T> next;

构造函数接受一个T类型的简单参数:


代码如下:

public Node(T data)
{
    this.data = data;
    this.next = null;
}

Node 类的其余部分是很简单的,所有你需要使用Object的地方,你现在都需要使用T。LinkedList 类现在接受一个 T类型的Node,而不是一个简单的Node作为头结点。


代码如下:

public class LinkedList<T>{
Node<T> headNode = null;

再来一遍,转换是很直白的。任何地方你需要使用Object的,现在改做T,任何需要使用Node的地方,现在改做 Node<T>。下面的代码初始化了两个链接表。一个是整型的。


代码如下:

LinkedList<int> ll = new LinkedList<int>();

另一个是Employee类型的:


代码如下:

LinkedList<Employee> employees = new LinkedList<Employee>();

剩下的代码与第一个版本没有区别,除了没有装箱、拆箱,而且也不可能将错误的类型保存到集合中。


代码如下:

LinkedList<int> ll = new LinkedList<int>();
for ( int i = 0; i < 10; i ++ )
{
    ll.Add(i);
}

Console.WriteLine(ll);
Console.WriteLine("  Done.");

LinkedList<Employee> employees = new LinkedList<Employee>();
employees.Add(new Employee("John"));
employees.Add(new Employee("Paul"));
employees.Add(new Employee("George"));
employees.Add(new Employee("Ringo"));

Console.WriteLine(employees);
Console.WriteLine("  Done.");
Console.WriteLine("The fourth integer is " + ll[3]);
Employee d = employees[1];
Console.WriteLine("The second Employee is " + d);

泛型允许你不用复制/粘贴冗长的代码就实现类型安全的集合。而且,因为泛型是在运行时才被扩展成特殊类型。Just In Time编译器可以在不同的实例之间共享代码,最后,它显著地减少了你需要编写的代码。

(0)

相关推荐

  • C#数据结构与算法揭秘四 双向链表

    首先,明白什么是双向链表.所谓双向链表是如果希望找直接前驱结点和直接后继结点的时间复杂度都是 O(1),那么,需要在结点中设两个引用域,一个保存直接前驱结点的地址,叫 prev,一个直接后继结点的地址,叫 next,这样的链表就是双向链表(Doubly Linked List).双向链表的结点结构示意图如图所示. 双向链表结点的定义与单链表的结点的定义很相似, ,只是双向链表多了一个字段 prev.其实,双向链表更像是一根链条一样,你连我,我连你,不清楚,请看图. 双向链表结点类的实现如下所示

  • C#定义并实现单链表实例解析

    本文以实例详细描述了C#定义并实现单链表的过程及原理.一般来说C#定义并实现单链表,代码包括构成链表的结点定义.用变量来实现表头.清空整个链表 .链表复位,使第一个结点成为当前结点.判断链表是否为空.判断当前结点是否为最后一个结点.返回当前结点的下一个结点的值,并使其成为当前结点.将当前结点移出链表,下一个结点成为当前结点等内容. 具体实现代码如下所示: using System; using System.IO; // 构成链表的结点定义 public class Node { public

  • C#实现单链表(线性表)完整实例

    本文实例讲述了C#实现单链表(线性表)的方法.分享给大家供大家参考,具体如下: 顺序表由连续内存构成,链表则不同.顺序表的优势在于查找,链表的优势在于插入元素等操作.顺序表的例子:http://www.jb51.net/article/87605.htm 要注意的是,单链表的Add()方法最好不要频繁调用,尤其是链表长度较长的时候,因为每次Add,都会从头节点到尾节点进行遍历,这个缺点的优化方法是将节点添加到头部,但顺序是颠倒的. 所以,在下面的例子中,执行Purge(清洗重复元素)的时候,没有

  • C#双向链表LinkedList排序实现方法

    本文实例讲述了C#双向链表LinkedList排序实现方法.分享给大家供大家参考.具体如下: 1.函数 打印链表函数PrintLinkedList 和 排序函数SortLinkedList 注:下面代码中的链表每项都是double类型,如果换做其他的类型或结构,则需要适当修改 /// <summary> /// 打印链表各结点信息 /// </summary> /// <param name="ll"></param> private s

  • C#实现的简单链表类实例

    本文实例讲述了C#实现的简单链表类.分享给大家供大家参考.具体如下: 一.关于C#链表 C#链表可用类LinkedList来存放.本文中的类MyLinkedList只是实现了该类的最基本的功能.C#中没有指针,但因为C#中类在赋值时传递的是地址,因此仍然可以利用这点制作一个链表. 二.结点类Node和链表类MyLinkedList代码 /// <summary> /// 链表结点 /// </summary> class Node { //结点数据,前后结点 public obje

  • C#如何自定义线性节点链表集合

    本例子实现了如何自定义线性节点集合,具体代码如下: using System; using System.Collections; using System.Collections.Generic; namespace LineNodeDemo { class Program { static void Main(string[] args) { LineNodeCollection lineNodes = new LineNodeCollection(); lineNodes.Add(new

  • C#数据结构之单链表(LinkList)实例详解

    本文实例讲述了C#数据结构之单链表(LinkList)实现方法.分享给大家供大家参考,具体如下: 这里我们来看下"单链表(LinkList)".在上一篇<C#数据结构之顺序表(SeqList)实例详解>的最后,我们指出了:顺序表要求开辟一组连续的内存空间,而且插入/删除元素时,为了保证元素的顺序性,必须对后面的元素进行移动.如果你的应用中需要频繁对元素进行插入/删除,那么开销会很大. 而链表结构正好相反,先来看下结构: 每个元素至少具有二个属性:data和next.data

  • C#数据结构与算法揭秘三 链表

    上文我们讨论了一种最简单的线性结构--顺序表,这节我们要讨论另一种线性结构--链表. 什么是链表了,不要求逻辑上相邻的数据元素在物理存储位置上也相邻存储的线性结构称之为链表.举个现实中的例子吧,假如一个公司召开了视频会议的吧,能在北京总公司人看到上海分公司的人,他们就好比是逻辑上相邻的数据元素,而物理上不相连.这样就好比是个链表. 链表分为①单链表,②单向循环链表,③双向链表,④双向循环链表. 介绍各种各样链表之前,我们要明白这样一个概念.什么是结点.在存储数据元素时,除了存储数据元素本身的信息

  • c# 自定义泛型链表类的详解

    (1)自定义泛型链表类. 复制代码 代码如下: public class GenericList<T>    {        private class Node        {            //当前节点值            private T data;            public T Data            {                get { return data; }                set { data = value; } 

  • C#数据结构之循环链表的实例代码

    复制代码 代码如下: public class Node    {        public object Element;        public Node Link; public Node()        {            Element = null;            Link = null;        } public Node(object theElement)        {            Element = theElement;      

随机推荐