python实现的二叉树定义与遍历算法实例

本文实例讲述了python实现的二叉树定义与遍历算法。分享给大家供大家参考,具体如下:

初学python,需要实现一个决策树,首先实践一下利用python实现一个二叉树数据结构。建树的时候做了处理,保证建立的二叉树是平衡二叉树。

# -*- coding: utf-8 -*-
from collections import deque
class Node:
  def __init__(self,val,left=None,right=None):
    self.val=val
    self.left=left
    self.right=right
  #setter and getter
  def get_val(self):
    return self.val
  def set_val(self,val):
    self.val=val
  def get_left(self):
    return self.left
  def set_left(self,left):
    self.left=left
  def get_right(self):
    return self.right
  def set_right(self,right):
    self.right=right
class Tree:
  def __init__(self,list):
    list=sorted(list)
    self.root=self.build_tree(list)
  #递归建立平衡二叉树
  def build_tree(self,list):
    l=0
    r=len(list)-1
    if(l>r):
      return None
    if(l==r):
      return Node(list[l])
    mid=(l+r)/2
    root=Node(list[mid])
    root.left=self.build_tree(list[:mid])
    root.right=self.build_tree(list[mid+1:])
    return root
  #前序遍历
  def preorder(self,root):
    if(root is None):
      return
    print root.val
    self.preorder(root.left)
    self.preorder(root.right)
  #后序遍历
  def postorder(self,root):
    if(root is None):
      return
    self.postorder(root.left)
    self.postorder(root.right)
    print root.val
  #中序遍历
  def inorder(self,root):
    if(root is None):
      return
    self.inorder(root.left)
    print root.val
    self.inorder(root.right)
  #层序遍历
  def levelorder(self,root):
    if root is None:
      return
    queue =deque([root])
    while(len(queue)>0):
      size=len(queue)
      for i in range(size):
        node =queue.popleft()
        print node.val
        if node.left is not None:
          queue.append(node.left)
        if node.right is not None:
          queue.append(node.right)
list=[1,-1,3,4,5]
tree=Tree(list)
print '中序遍历:'
tree.inorder(tree.root)
print '层序遍历:'
tree.levelorder(tree.root)
print '前序遍历:'
tree.preorder(tree.root)
print '后序遍历:'
tree.postorder(tree.root)

输出:

中序遍历
-1
1
3
4
5
层序遍历
3
-1
4
1
5
前序遍历
3
-1
1
4
5
后序遍历
1
-1
5
4
3

建立的二叉树如下图所示:

PS:作者的github: https://github.com/zhoudayang

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python利用前序和中序遍历结果重建二叉树的方法

    本文实例讲述了Python利用前序和中序遍历结果重建二叉树的方法.分享给大家供大家参考,具体如下: 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 这道题比较容易,前序遍历的结果中,第一个结点一定是根结点,然后在中序遍历的结果中查找这个根结点,根结点左边的就是左子树,根结点右边的就是右子树,递归构造出左.右子树即可.示意图如图所示: 利用前序和中序遍历的结果重建二叉树 Python代码: # coding: utf-8 ''

  • python数据结构之二叉树的遍历实例

    遍历方案   从二叉树的递归定义可知,一棵非空的二叉树由根结点及左.右子树这三个基本部分组成.因此,在任一给定结点上,可以按某种次序执行三个操作:   1).访问结点本身(N)   2).遍历该结点的左子树(L)   3).遍历该结点的右子树(R) 有次序:   NLR.LNR.LRN 遍历的命名 根据访问结点操作发生位置命名:NLR:前序遍历(PreorderTraversal亦称(先序遍历))  --访问结点的操作发生在遍历其左右子树之前.LNR:中序遍历(InorderTraversal)

  • python数据结构之二叉树的建立实例

    先建立二叉树节点,有一个data数据域,left,right 两个指针域 复制代码 代码如下: # -*- coding: utf - 8 - *- class TreeNode(object): def __init__(self, left=0, right=0, data=0):        self.left = left        self.right = right        self.data = data 复制代码 代码如下: class BTree(object):

  • python实现的二叉树算法和kmp算法实例

    主要是:前序遍历.中序遍历.后序遍历.层级遍历.非递归前序遍历.非递归中序遍历.非递归后序遍历 复制代码 代码如下: #!/usr/bin/env python#-*- coding:utf8 -*- class TreeNode(object):    def __init__(self, data=None, left=None, right=None):        self.data = data        self.left = left        self.right =

  • Python实现二叉树结构与进行二叉树遍历的方法详解

    二叉树的建立 使用类的形式定义二叉树,可读性更好 class BinaryTree: def __init__(self, root): self.key = root self.left_child = None self.right_child = None def insert_left(self, new_node): if self.left_child == None: self.left_child = BinaryTree(new_node) else: t = BinaryTr

  • Python中的二叉树查找算法模块使用指南

    python中的二叉树模块内容: BinaryTree:非平衡二叉树  AVLTree:平衡的AVL树  RBTree:平衡的红黑树 以上是用python写的,相面的模块是用c写的,并且可以做为Cython的包. FastBinaryTree  FastAVLTree  FastRBTree 特别需要说明的是:树往往要比python内置的dict类慢一些,但是它中的所有数据都是按照某个关键词进行排序的,故在某些情况下是必须使用的. 安装和使用 安装方法 安装环境: ubuntu12.04, py

  • Python编程实现二叉树及七种遍历方法详解

    本文实例讲述了Python实现二叉树及遍历方法.分享给大家供大家参考,具体如下: 介绍: 树是数据结构中非常重要的一种,主要的用途是用来提高查找效率,对于要重复查找的情况效果更佳,如二叉排序树.FP-树.另外可以用来提高编码效率,如哈弗曼树. 代码: 用Python实现树的构造和几种遍历算法,虽然不难,不过还是把代码作了一下整理总结.实现功能: ① 树的构造 ② 递归实现先序遍历.中序遍历.后序遍历 ③ 堆栈实现先序遍历.中序遍历.后序遍历 ④ 队列实现层次遍历 #coding=utf-8 cl

  • python二叉树的实现实例

    树的定义树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样.树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示.树在计算机领域中也得到广泛应用,如在编译源程序时,可用树表示源程序的语法结构.又如在数据库系统中,树型结构也是信息的重要组织形式之一.一切具有层次关系的问题都可用树来描述.树结构的特点是:它的每一个结点都可以有不止一个直接后继,除根结点外的所有结点都有且只有一个直接前驱.树的递归定义如下:(1

  • python数据结构树和二叉树简介

    一.树的定义 树形结构是一类重要的非线性结构.树形结构是结点之间有分支,并具有层次关系的结构.它非常类似于自然界中的树.树的递归定义:树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:(1)有且仅有一个特定的称为根(Root)的结点:(2)其余的结点可分为m(m≥0)个互不相交的子集Tl,T2,-,Tm,其中每个子集本身又是一棵树,并称其为根的子树(Subree). 二.二叉树的定义 二叉树是由n(n≥0)个结点组成的有限集合.每个结点最多有两个子树的有序树

  • python数据结构之二叉树的统计与转换实例

    一.获取二叉树的深度 就是二叉树最后的层次,如下图: 实现代码: 复制代码 代码如下: def getheight(self):        ''' 获取二叉树深度 '''        return self.__get_tree_height(self.root) def __get_tree_height(self, root):        if root is 0:            return 0        if root.left is 0 and root.righ

  • python二叉树遍历的实现方法

    复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- class TreeNode(object):    def __init__(self,data=0,left=0,right=0):        self.data = data        self.left = left        self.right = right class BTree(object):    def __init__(self,root=0):     

随机推荐