Python pandas按行、按列遍历DataFrame的几种方式

目录
  • 前言
  • 一、按行遍历
    • 1. 使用loc或iloc方法
    • 2. 使用iterrows()方法
  • 二、按列遍历
    • 1. 使用列索引方式
    • 2. 使用iteritems()方法
  • 补充:遍历dataframe每一行的每一个元素
  • 总结

前言

在对DataFrame数据进行处理时,存在需要对数据内容进行遍历的场景。因此记录一下按照行,列遍历的几种方式。

一、按行遍历

1. 使用loc或iloc方法

  • loc:表示location,填写内容为行的值或者列表,若填写内容为值,则返回对应行的内容(Series类型);若填写内容为列表,则返回对应行的内容(DataFrame类型)
  • iloc:表示integer+location,填写内容为行的索引(int类型)或者列表,返回内容与loc相同。

因此若需要按照行进行遍历时,

  • 先可以使用index方法获取索引内容,再使用loc方法
  • 先可以使用shape[0]方法获取总行数,再使用iloc方法

2. 使用iterrows()方法

iterrows():按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问

因此可以直接使用iterrows()方法,获取得到行内容

代码如下:

data = {'a': {'x': [1, 1], 'y': [2, 1], 'z': [3, 1]},
        'b': {'x': [1, 2], 'y': [2, 2], 'z': [3, 2]},
        'c': {'x': [1, 3], 'y': [2, 3], 'z': [3, 3]}}
data_pd = pd.DataFrame(data)

print(data_pd)

for row in data_pd.index:
    print(data_pd.loc[row]['a'])

for row_id in range(data_pd.shape[0]):
    print(data_pd.iloc[row_id]['a'])

for index, row in data_pd.iterrows():
    print(row['a'])

运行结果,三种方法结果相同:

a       b       c
x  [1, 1]  [1, 2]  [1, 3]
y  [2, 1]  [2, 2]  [2, 3]
z  [3, 1]  [3, 2]  [3, 3]

[1, 1]
[2, 1]
[3, 1]

二、按列遍历

1. 使用列索引方式

DataFrame可以直接使用[列名称]的方式获取列的值,即data_pd['a']即可得到列内容。

因此若需要按照列进行遍历时,先可以使用colums方法获取列内容,再使用[列名称]方式

2. 使用iteritems()方法

iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问

因此可以直接使用iteritems()方法,获取得到列内容

代码如下:

data = {'a': {'x': [1, 1], 'y': [2, 1], 'z': [3, 1]},
        'b': {'x': [1, 2], 'y': [2, 2], 'z': [3, 2]},
        'c': {'x': [1, 3], 'y': [2, 3], 'z': [3, 3]}}
data_pd = pd.DataFrame(data)

print(data_pd)

for col in data_pd.columns:
    print(data_pd[col].iloc[0])

for index, col in data_pd.iteritems():
    print(col.iloc[0])

运行结果,两种方法结果相同:

a       b       c
x  [1, 1]  [1, 2]  [1, 3]
y  [2, 1]  [2, 2]  [2, 3]
z  [3, 1]  [3, 2]  [3, 3]

[1, 1]
[1, 2]
[1, 3]

补充:遍历dataframe每一行的每一个元素

python遍历的代码,其中df是dataframe类型:

        #1. 从mysql读取数据
        #"ts_code", "buydate", "buyprice", "selldate", "sellprice", "duration", "strategyid"
        df = self.dbadapter.QueryBTStrategy(id=1)
        #2. 统计某一个卖出时间,对应的涨跌幅平均值

        print(type(df))   #<class 'pandas.core.frame.DataFrame'>
        print(type(df.values))#<class 'numpy.ndarray'>
        print(df.values)

        #遍历
        for row in df.values:
            print(row[0], '  ', row[1], '  ', row[2])

输出:

<class 'pandas.core.frame.DataFrame'>
<class 'numpy.ndarray'>
[['002089.SZ' '20190416' Decimal('5.75') ... Decimal('6.10') 1 '1']
 ['002231.SZ' '20190416' Decimal('8.35') ... Decimal('9.19') 1 '1']
 ['002792.SZ' '20190416' Decimal('35.85') ... Decimal('37.28') 1 '1']
 ...
 ['600621.SH' '20190906' Decimal('13.78') ... Decimal('14.15') 1 '1']
 ['603058.SH' '20190905' Decimal('7.52') ... Decimal('7.77') 2 '1']
 ['603797.SH' '20190906' Decimal('12.88') ... Decimal('13.94') 1 '1']]
002089.SZ    20190416    5.75
002231.SZ    20190416    8.35
002792.SZ    20190416    35.85
300115.SZ    20190416    13.97
300394.SZ    20190416    34.56
300590.SZ    20190416    42.80
300634.SZ    20190416    30.43
603220.SH    20190416    34.62
300312.SZ    20190416    9.21
002426.SZ    20190417    3.66
300072.SZ    20190418    12.50
603626.SH    20190418    11.34
000413.SZ    20190419    6.99
000530.SZ    20190418    5.24
000972.SZ    20190417    3.79
002147.SZ    20190419    3.49
002297.SZ    20190419    8.66
002316.SZ    20190418    10.03
002436.SZ    20190418    5.77
002778.SZ    20190419    23.00
300128.SZ    20190419    5.80
300136.SZ    20190416    31.24
300160.SZ    20190419    4.58
300366.SZ    20190419    9.78
600773.SH    20190419    8.86
603015.SH    20190418    8.24
603059.SH    20190419    38.19
002600.SZ    20190422    6.31
600499.SH    20190422    5.88
002243.SZ    20190423    22.03
002837.SZ    20190423    21.74
300710.SZ    20190423    33.15
600235.SH    20190423    7.81
600604.SH    20190423    17.58
000050.SZ    20190424    17.38
000997.SZ    20190424    19.33
002387.SZ    20190424    14.01
002870.SZ    20190424    25.95
300097.SZ    20190424    14.84
600186.SH    20190424    2.30
300012.SZ    20190426    9.77
603283.SH    20190426    21.96
600410.SH    20190429    9.73
002698.SZ    20190510    14.32
300578.SZ    20190510    28.73
300472.SZ    20190515    22.13
002112.SZ    20190516    8.35
002496.SZ    20190516    3.63
002621.SZ    20190515    22.87
603899.SH    20190515    39.88
600238.SH    20190520    9.10
600331.SH    20190520    3.50
601208.SH    20190520    5.02
603528.SH    20190521    7.81
000955.SZ    20190522    5.29
002032.SZ    20190522    69.60
002368.SZ    20190522    34.63
300126.SZ    20190522    6.47
300540.SZ    20190522    19.60
600555.SH    20190522    3.22
603496.SH    20190522    29.18
000652.SZ    20190523    4.08
002638.SZ    20190523    3.00
600128.SH    20190523    8.27
600792.SH    20190523    4.22
603638.SH    20190523    21.75
603977.SH    20190523    8.15
002939.SZ    20190524    13.09
002947.SZ    20190524    40.80
603906.SH    20190524    13.93
002084.SZ    20190524    4.98
002370.SZ    20190527    17.84
002666.SZ    20190527    4.98
002943.SZ    20190527    31.64
600117.SH    20190527    4.03
601162.SH    20190527    8.91
002072.SZ    20190528    4.86
002163.SZ    20190528    5.76
002564.SZ    20190527    5.98
002886.SZ    20190528    22.35
002888.SZ    20190527    19.97
002906.SZ    20190527    11.06
600064.SH    20190528    11.17
600523.SH    20190528    13.56
000812.SZ    20190528    4.02
002090.SZ    20190529    20.34
002822.SZ    20190529    5.89
002945.SZ    20190529    11.99
300293.SZ    20190528    8.69
300426.SZ    20190529    7.21
600031.SH    20190528    12.65
600480.SH    20190528    9.87
600635.SH    20190528    6.91
600961.SH    20190529    8.74
603308.SH    20190527    9.97
603377.SH    20190527    17.46
000852.SZ    20190530    9.06
002167.SZ    20190530    7.39
002460.SZ    20190530    25.11
002688.SZ    20190530    5.91
002942.SZ    20190530    29.82
300179.SZ    20190524    4.56
300191.SZ    20190530    18.88
300363.SZ    20190530    8.83
300697.SZ    20190530    13.74
600302.SH    20190529    5.84
603590.SH    20190530    38.58
603727.SH    20190530    16.95
603876.SH    20190530    16.83
000611.SZ    20190531    3.84
000975.SZ    20190531    10.47
002136.SZ    20190528    8.59
002155.SZ    20190531    8.21
002443.SZ    20190531    7.78
002531.SZ    20190531    5.46
002921.SZ    20190531    21.39
300746.SZ    20190531    18.35
600538.SH    20190531    5.45
600871.SH    20190531    2.75
600929.SH    20190530    9.03
601865.SH    20190531    12.23
603031.SH    20190531    13.00
603700.SH    20190531    26.17
603713.SH    20190531    41.30
000544.SZ    20190531    6.23
000961.SZ    20190603    8.98
002636.SZ    20190530    8.19
002828.SZ    20190603    13.28
300208.SZ    20190603    6.40
300501.SZ    20190603    22.32
600525.SH    20190603    5.85
600547.SH    20190603    32.29
601100.SH    20190528    30.35
601319.SH    20190529    9.10
603042.SH    20190603    14.47
603136.SH    20190530    21.63
603559.SH    20190603    21.07
603602.SH    20190603    22.66
603912.SH    20190603    15.08
002422.SZ    20190531    30.16
002848.SZ    20190604    14.10
300678.SZ    20190604    22.16
300716.SZ    20190603    11.42
600311.SH    20190604    4.23
601928.SH    20190531    8.11
002217.SZ    20190604    5.90
002491.SZ    20190605    8.51
002908.SZ    20190605    21.16
300410.SZ    20190603    20.01
300570.SZ    20190605    22.16
300597.SZ    20190605    16.72
300638.SZ    20190605    49.62
002557.SZ    20190605    23.30
002813.SZ    20190610    32.32
000037.SZ    20190611    10.60
002398.SZ    20190611    6.40
002571.SZ    20190611    6.05
300103.SZ    20190611    10.53
603922.SH    20190611    16.80
000633.SZ    20190612    5.56
002464.SZ    20190611    12.25
300339.SZ    20190612    13.23
300357.SZ    20190611    31.86
600864.SH    20190612    6.88
000338.SZ    20190611    12.46
002670.SZ    20190613    11.33
300014.SZ    20190613    25.80
300386.SZ    20190613    12.99
300469.SZ    20190613    23.44
300605.SZ    20190613    20.86
600193.SH    20190613    3.29
600478.SH    20190613    6.09
600698.SH    20190613    2.72
000976.SZ    20190614    5.45
600421.SH    20190614    13.76
600711.SH    20190614    5.56
000545.SZ    20190617    4.29
002511.SZ    20190617    11.00
600456.SH    20190617    23.27
600882.SH    20190617    10.50
300518.SZ    20190618    25.32
603008.SH    20190618    11.18
002384.SZ    20190620    14.75
002672.SZ    20190620    11.77
300262.SZ    20190620    6.80
600501.SH    20190620    9.08
600885.SH    20190620    24.16
601555.SH    20190620    10.52
000716.SZ    20190621    5.79
601388.SH    20190621    2.27
002450.SZ    20190624    2.81
002705.SZ    20190624    10.70
300509.SZ    20190624    9.04
600530.SH    20190624    6.22
600682.SH    20190621    10.79
601218.SH    20190624    3.16
603816.SH    20190624    30.99
002568.SZ    20190624    16.87
002631.SZ    20190625    8.91
300111.SZ    20190625    2.79
300417.SZ    20190621    22.00
600378.SH    20190625    14.92
603185.SH    20190624    42.09
603233.SH    20190624    42.42
603660.SH    20190624    15.53
002184.SZ    20190625    11.70
002589.SZ    20190625    7.67
600026.SH    20190621    6.53
601777.SH    20190626    4.64
603936.SH    20190626    13.39
002175.SZ    20190626    2.27
002388.SZ    20190627    6.86
300353.SZ    20190625    13.77
300601.SZ    20190627    52.15
300655.SZ    20190627    16.18
600408.SH    20190627    2.44
600677.SH    20190625    18.24
603517.SH    20190626    38.35
603800.SH    20190626    13.54
000820.SZ    20190626    2.34
002544.SZ    20190628    13.00
000859.SZ    20190701    5.39
002397.SZ    20190701    5.66
002458.SZ    20190701    20.86
002579.SZ    20190701    10.92
002650.SZ    20190701    3.88
300420.SZ    20190624    5.59
300566.SZ    20190701    17.03
600462.SH    20190626    1.61
000038.SZ    20190702    8.20
002274.SZ    20190702    7.54
300207.SZ    20190701    12.45
300571.SZ    20190701    43.41
600368.SH    20190703    5.22
600614.SH    20190703    2.55
300696.SZ    20190704    29.58
300717.SZ    20190705    17.34
600035.SH    20190705    3.76
603739.SH    20190705    31.81
002100.SZ    20190708    9.13
600191.SH    20190708    6.17
601177.SH    20190708    10.42
300123.SZ    20190708    8.90
603229.SH    20190701    13.30
300387.SZ    20190715    11.09
600281.SH    20190712    4.97
002194.SZ    20190717    15.99
002777.SZ    20190716    27.50
002692.SZ    20190718    2.60
300174.SZ    20190717    21.80
002909.SZ    20190718    10.58
300595.SZ    20190725    36.73
603843.SH    20190729    5.97
300250.SZ    20190801    14.29
300499.SZ    20190801    10.93
300508.SZ    20190729    33.56
600275.SH    20190801    2.46
603110.SH    20190801    16.64
603722.SH    20190801    24.00
600366.SH    20190805    8.10
300542.SZ    20190806    14.80
300745.SZ    20190806    25.10
600083.SH    20190806    13.23
603617.SH    20190808    18.89
300600.SZ    20190809    10.63
300726.SZ    20190812    26.03
002786.SZ    20190815    7.66
603583.SH    20190815    34.83
002781.SZ    20190812    18.52
300556.SZ    20190819    17.80
600127.SH    20190815    5.18
002168.SZ    20190820    8.60
601066.SH    20190820    18.80
002192.SZ    20190821    16.71
300081.SZ    20190821    8.55
300675.SZ    20190821    16.29
600081.SH    20190821    9.86
600217.SH    20190821    5.86
600745.SH    20190821    42.85
002130.SZ    20190822    4.76
002229.SZ    20190822    6.90
002325.SZ    20190821    3.13
300379.SZ    20190820    21.20
300449.SZ    20190822    9.02
603520.SH    20190822    23.57
002437.SZ    20190823    3.48
600903.SH    20190823    11.68
002114.SZ    20190823    8.01
002509.SZ    20190827    1.74
002662.SZ    20190826    2.88
002743.SZ    20190827    5.95
300431.SZ    20190827    5.36
300107.SZ    20190829    8.09
300351.SZ    20190827    8.71
600800.SH    20190826    5.48
002077.SZ    20190830    6.24
002570.SZ    20190827    5.28
300455.SZ    20190830    9.18
002395.SZ    20190902    24.35
300362.SZ    20190830    3.40
300598.SZ    20190902    34.82
300629.SZ    20190902    21.20
300768.SZ    20190902    38.52
000727.SZ    20190903    2.33
002467.SZ    20190903    5.94
002941.SZ    20190903    22.61
600198.SH    20190903    11.67
002195.SZ    20190903    3.50
300637.SZ    20190904    12.88
603078.SH    20190903    27.62
000063.SZ    20190905    30.65
600776.SH    20190905    22.46
000586.SZ    20190906    12.86
000890.SZ    20190906    6.44
002396.SZ    20190906    27.58
300260.SZ    20190904    12.53
300560.SZ    20190906    18.47
300763.SZ    20190904    39.21
600094.SH    20190906    7.79
600352.SH    20190905    14.88
600621.SH    20190906    13.78
603058.SH    20190905    7.52
603797.SH    20190906    12.88
回测用时(秒): 0

总结

到此这篇关于Python pandas按行、按列遍历DataFrame的文章就介绍到这了,更多相关pandas按行列遍历DataFrame内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Pandas DataFrame操作数据增删查改

    目录 一.DataFrame数据准备 二.增删改查操作 1,增 2,查 3,改 4,删 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只能在生成的新数据块中实现编辑效果.当inplace=True时执行内部编辑,不返回任何值,原数据发生改变. import numpy as np import pandas as pd #测试数据. df = pd.DataFrame(data = [['lisa','f',22]

  • pandas进阶教程之Dataframe的apply方法

    目录 apply方法介绍 用例1 用例2 用例3 总结 apply方法介绍 方法形式为 apply(func, axis=0, raw=False, result_type=None, agrs=(), **kwargs),沿Dataframe的轴应用func函数. 传递给函数的对象是Series对象,当axis=0时,其索引是Dataframe的索引:当axis=1时,其索引是Dataframe的列. 默认情况下,result_type=None,最终返回的类型是从func函数的返回推断出来的

  • 详解Pandas如何高效对比处理DataFrame的两列数据

    目录 楔子 combine_first combine update 楔子 我们在用 pandas 处理数据的时候,经常会遇到用其中一列数据替换另一列数据的场景.比如 A 列和 B 列,对 A 列中不为空的数据不作处理,对 A 列中为空的数据使用 B 列对应索引的数据进行替换.这一类的需求估计很多人都遇到,当然还有其它更复杂的. 解决这类需求的办法有很多,这里我们来推荐几个. combine_first 这个方法是专门用来针对空值处理的,我们来看一下用法. import pandas as pd

  • Python Pandas实现DataFrame合并的图文教程

    目录 一.merge(合并)的语法: 二.以关键列来合并两个dataframe 三.理解merge时数量的对齐关系 1.one-to-one 一对一关系的merge 2.one-to-many 一对多关系的merge 3.many-to-many 多对多关系的merge 四.理解left join.right join.inner join.outer join的区别 1.inner join,默认 2.left join 3. right join 4. outer join 五.如果出现非K

  • Python  处理 Pandas DataFrame 中的行和列

    目录 处理列 处理行 前言: 数据框是一种二维数据结构,即数据以表格的方式在行和列中对齐.我们可以对行/列执行基本操作,例如选择.删除.添加和重命名.在本文中,我们使用的是nba.csv文件. 处理列 为了处理列,我们对列执行基本操作,例如选择.删除.添加和重命名. 列选择:为了在 Pandas DataFrame 中选择一列,我们可以通过列名调用它们来访问这些列. # Import pandas package import pandas as pd # 定义包含员工数据的字典 data =

  • pandas dataframe drop函数介绍

    使用drop函数删除dataframe的某列或某行数据: drop(labels, axis=0, level=None, inplace=False, errors='raise') -- axis为0时表示删除行,axis为1时表示删除列 常用参数如下:  import pandas as pd import numpy as np data = {'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'], '

  • pandas中字典和dataFrame的相互转换

    目录 一.字典转dataFrame 1.字典转dataFrame比较简单,直接给出示例: 二.dataFrame转字典 1.DataFrame.to_dict() 函数介绍 2.orient =‘dict’ 3. orient =‘list’ 4.orient =‘series’ 5.orient =‘split’ 6.orient =‘records’ 7.orient =‘index’ 8.指定列为key生成字典的实现步骤(按行) 9.指定列为key,value生成字典的实现 总结 一.字典

  • 利用Pandas求两个dataframe差集的过程详解

    目录 1.交集 2.差集(df1-df2为例) 总结 1.交集 intersected=pd.merge(df1,df2,how='inner') 延伸(针对列求交集)intersected=pd.merge(df1,df2,on['name'],how='inner') 2.差集(df1-df2为例) diff=pd.concat([df1,df2,df2]).drop_duplicates(keep=False) 差集函数的详解: 1.Pandas 通过 concat() 函数能够轻松地将

  • Python Pandas 修改表格数据类型 DataFrame 列的顺序案例

    目录 一.修改表格数据类型 DataFrame 列的顺序 1.1主要知识点 1.2创建 python 文件 1.3运行结果 二.Pandas 如何统计某个数据列的空值个数 2.1主要知识点 2.2创建 python 文件 2.3运行结果 三.Pandas如何移除包含空值的行 3.1主要知识点 3.2创建 python 文件 3.3运行结果 四.Pandas如何精确设置表格数据的单元格的值 4.1主要知识点 4.2创建 python 文件 4.3运行结果 一.修改表格数据类型 DataFrame

  • pandas按行按列遍历Dataframe的几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问. itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高. iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问. 示例

  • Python pandas按行、按列遍历DataFrame的几种方式

    目录 前言 一.按行遍历 1. 使用loc或iloc方法 2. 使用iterrows()方法 二.按列遍历 1. 使用列索引方式 2. 使用iteritems()方法 补充:遍历dataframe每一行的每一个元素 总结 前言 在对DataFrame数据进行处理时,存在需要对数据内容进行遍历的场景.因此记录一下按照行,列遍历的几种方式. 一.按行遍历 1. 使用loc或iloc方法 loc:表示location,填写内容为行的值或者列表,若填写内容为值,则返回对应行的内容(Series类型):若

  • Python Pandas list列表数据列拆分成多行的方法实现

    1.实现的效果 示例代码: df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]}) df Out[458]: A B 0 1 [1, 2] 1 2 [1, 2] 拆分成多行的效果: A  B 0  1  1 1  1  2 3  2  1 4  2  2 2.拆分成多行的方法 1)通过apply和pd.Series实现 容易理解,但在性能方面不推荐. df.set_index('A').B.apply(pd.Series).stack().reset_ind

  • 如何利用Python批量处理行、列和单元格详解

    目录 精确调整工作表的行高和列宽 批量更改多个工作簿的数据格式 批量更改工作簿的外观格式 设置字体格式 修改字体为宋体 修改字号 字体加粗 字体颜色 单元格填充颜色 对齐方式 添加合适粗细的边框 替换工作簿的行数据 提取指定数据 提取列数据 追加行数据 提取所有工作表的唯一值 总结 精确调整工作表的行高和列宽 步骤 打开工作簿. 遍历所有工作表 核心代码 for i in workbook.sheets: value = i.range('A1').expand('table') value.c

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • python pandas 如何替换某列的一个值

    摘要:本文主要是讲解怎么样替换某一列的一个值. 应用场景: 假如我们有以下的数据集: 我们想把里面不是pre的字符串全部换成Nonpre,我们要怎么做呢? 做法很简单. df['col2']=df['col1'] df.loc[df['col1'] !=' pre','col2']=Nonpre 以上这篇python pandas 如何替换某列的一个值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python生成1行四列全2矩阵的方法

    如下所示: print np.ones((1,4))*2 以上这篇python生成1行四列全2矩阵的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python创建n行m列数组示例

    我就废话不多说了,直接上代码吧! >>> matrix=[None]*2 >>> print(matrix) [None, None] >>> for i in range(len(matrix)): matrix[i ]=[0]*3 >>> print(matrix) [[0, 0, 0], [0, 0, 0]] >>> 例 n = 2 m = 3 matrix = [None]*2 for i in range(

  • Oracle 遍历游标的四种方式汇总(for、fetch、while、BULK COLLECT)

    1.情景展示 Oracle 遍历游标的四种方式(for.fetch.while.bulk collect+forall) 2.问题分析 我们可以把游标想象成一张表,想要遍历游标,就要取到游标的每行数据,所以问题的关键就成了:如何取到行数据? 3.解决方案 方式一:FOR 循环(推荐使用) 变形一:遍历显式游标 /* 如果是在存储过程外使用显式游标,需要使用DECLARE关键字 */ DECLARE   /*创建游标*/   CURSOR CUR_FIRST_INDEX IS     SELECT

  • Java中遍历ConcurrentHashMap的四种方式详解

    这篇文章主要介绍了Java中遍历ConcurrentHashMap的四种方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 方式一:在for-each循环中使用entries来遍历 System.out.println("方式一:在for-each循环中使用entries来遍历");for (Map.Entry<String, String> entry: map.entrySet()) { System.out.pr

随机推荐