Python+OpenCV之图像梯度详解

目录
  • 1. Sobel算子
    • 1.1 Sobel介绍
    • 1.2 横向Sobel算子
    • 1.3 纵向Sobel算子
    • 1.4 合并横纵向的方法提取更好的边缘的结果
    • 1.5 利用1.3方法绘制素描风格
  • 2. Scharr算子
  • 3. Laplacian算子

1. Sobel算子

OpenCV系列—本文底页有多个常用方法链接

1.1 Sobel介绍

cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小

import cv2  # opencv读取的格式是BGR

def cv_show(img, name):
    cv2.imshow(name, img)
    cv2.waitKey()
    cv2.destroyAllWindows()

img = cv2.imread('../img/pie.png', cv2.IMREAD_GRAYSCALE)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

pie.png原图(右击另存为下载):

1.2 横向Sobel算子

采用上述公式中的 G x G_{x} Gx​滤波器扫描整张图,提取了左右两边有梯度差的位置,但是横向看圆的上顶端和下顶端的梯度不明显所以呈现图片如下上下端为虚线的圆

sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
cv_show(sobelx, 'sobelx')

结果如下:

白-黑是正数,黑-白就是负数了,所有的负数会被截断成0,所以要取绝对值。

sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
cv_show(sobelx, 'sobelx')

加入绝对值后,梯度结果就可以有一个完整的圆:

1.3 纵向Sobel算子

采用上述公式中的 G y G_{y} Gy​滤波器扫描整张图,提取了上下两边有梯度差的位置,但是纵向看圆的左顶端和右顶端的梯度不明显所以呈现图片如左右端为虚线的圆

sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
sobely = cv2.convertScaleAbs(sobely)
cv_show(sobely, 'sobely')

1.4 合并横纵向的方法提取更好的边缘的结果

将横向梯度提取滤波器 Gx与纵向梯度提取滤波器Gy相加,即可得到效果较好的圆的边缘梯度信息

sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)
cv_show(sobelxy, 'sobelxy')

不推荐

sobelxy = cv2.Sobel(img, cv2.CV_64F, 1, 1, ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy)
cv_show(sobelxy, 'sobelxy')

结果显示,相对于分开使用横纵向算子边缘重影严重:

1.5 利用1.3方法绘制素描风格

lena.jpg原图,另存为保存:

import cv2  # opencv读取的格式是BGR

img = cv2.imread('../img/lena.jpg', cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)
cv_show(sobelxy, 'sobelxy')

2. Scharr算子

import cv2  # opencv读取的格式是BGR

img = cv2.imread('../img/lena.jpg', cv2.IMREAD_GRAYSCALE)

scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
scharrx = cv2.convertScaleAbs(scharrx)
scharry = cv2.convertScaleAbs(scharry)
scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)

二阶动量对纹理细节区分更加丰富结果图如下:

3. Laplacian算子

import cv2  # opencv读取的格式是BGR

img = cv2.imread('../img/lena.jpg', cv2.IMREAD_GRAYSCALE)

laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)

需要配合其他操作共同使用,单个使用的效果不如上面两个算子,结果图如下:

到此这篇关于Python+OpenCV之图像梯度详解的文章就介绍到这了,更多相关OpenCV图像梯度内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OpenCV-Python实现图像梯度与Sobel滤波器

    图像梯度 图像梯度计算的是图像变化的速度.对于图像的边缘部分,其灰度值变化较大,梯度值也较大:相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小.一般情况下,图像的梯度计算是图像的边缘信息. 其实梯度就是导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值,也可以说是近似导数.该导数可以用微积分来表示. 在微积分中,一维函数的一阶微分的基本定义是这样的: 而图像是一个二维函数f(x,y),其微分当然就是偏微分.因此有: 因为图像是一个离散的二维函数,ϵ不能无限小,我们的图

  • python中的opencv 图像梯度

    目录 图像梯度 Sobel理论基础 计算水平方向偏导数的近似值 计算垂直方向偏导数的近似值 Sobel算子及函数使用 方向 计算x方向和y方向的边缘叠加 Scharr算子及函数使用 Sobel算子和Scharr算子的比较 Laplacian算子及函数使用 算子总结 图像梯度 图像梯度计算的是图像变化的速度.对于图像的边缘部分,其灰度值变化较大,梯度值也较大:相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小.图像梯度计算需要求导数,但是图像梯度一般通过计算像素值的差来得到梯度的

  • opencv python图像梯度实例详解

    这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子) # 用于求解图像边缘,一阶的极大值,二阶的零点

  • OpenCV半小时掌握基本操作之图像梯度

    目录 概述 梯度运算 礼帽 黑帽 Sobel 算子 计算 x 计算 y 计算 x+y 融合 [OpenCV]⚠️高手勿入! 半小时学会基本操作⚠️图像梯度 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. 梯度运算 梯度: 膨胀 (Dilating) - 腐蚀 (Eroding). 例子: # 读取图片 pie = cv2.imread("pie.jpg") # 核 kernel = np.ones((7,

  • OpenCV 图像梯度的实现方法

    目录 概述 梯度运算 礼帽 黑帽 Sobel 算子 计算 x 计算 y 计算 x+y 融合 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. 梯度运算 梯度: 膨胀 (Dilating) - 腐蚀 (Eroding). 例子: # 读取图片 pie = cv2.imread("pie.png") # 核 kernel = np.ones((7, 7), np.uint8) # 计算梯度 gradient =

  • Python+OpenCV之图像梯度详解

    目录 1. Sobel算子 1.1 Sobel介绍 1.2 横向Sobel算子 1.3 纵向Sobel算子 1.4 合并横纵向的方法提取更好的边缘的结果 1.5 利用1.3方法绘制素描风格 2. Scharr算子 3. Laplacian算子 1. Sobel算子 OpenCV系列—本文底页有多个常用方法链接 1.1 Sobel介绍 cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ksize是Sobel算子的

  • Python+OpenCV之图像轮廓详解

    目录 1. 图像轮廓 1.1 findContours介绍 1.2 绘制轮廓 1.3 轮廓特征 2. 轮廓近似 2.1 轮廓 2.2 边界矩形 2.3 外界多边形及面积 1. 图像轮廓 1.1 findContours介绍 cv2.findContours(img, mode, method) mode:轮廓检索模式 RETR_EXTERNAL :只检索最外面的轮廓: RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中: RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是

  • python opencv图像处理基本操作示例详解

    目录 1.图像基本操作 ①读取图像 ②显示图像 ③视频读取 ④图像截取 ⑤颜色通道提取及还原 ⑥边界填充 ⑦数值计算 ⑧图像融合 2.阈值与平滑处理 ①设定阈值并对图像处理 ②图像平滑-均值滤波 ③图像平滑-方框滤波 ④图像平滑-高斯滤波 ⑤图像平滑-中值滤波 3.图像的形态学处理 ①腐蚀操作 ②膨胀操作 ③开运算和闭运算 4.图像梯度处理 ①梯度运算 ②礼帽与黑帽 ③图像的梯度处理 5.边缘检测 ①Canny边缘检测 1.图像基本操作 ①读取图像 ②显示图像 该函数中,name是显示窗口的名字

  • Python OpenCV形态学运算示例详解

    目录 1. 腐蚀 & 膨胀 1.1什么是腐蚀&膨胀 1.2 腐蚀方法 cv2.erode() 1.3 膨胀方法 cv2.dilate() 2. 开运算 & 闭运算 2.1 简述 2.2 开运算 2.3 闭运算 3. morphologyEx()方法 3.1 morphologyEx()方法 介绍 3.2 梯度运算 3.3 顶帽运算 3.4 黑帽运算 1. 腐蚀 & 膨胀 1.1什么是腐蚀&膨胀 腐蚀&膨胀是图像形态学中的两种核心操作 腐蚀可以描述为是让图像沿

  • python OpenCV 实现高斯滤波详解

    目录 一.高斯滤波 二.C++代码 三.python代码 四.结果展示 1.原始图像 2.5x5卷积 3.9x9卷积 一.高斯滤波    高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程. [1] 通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到.高斯滤波的具体操作是:用一个模板(或称卷积.掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值. 二.C++代码

  • Python OpenCV机器学习之图像识别详解

    目录 背景 一.人脸识别 二.车牌识别 三.DNN图像分类 背景 OpenCV中也提供了一些机器学习的方法,例如DNN:本篇将简单介绍一下机器学习的一些应用,对比传统和前沿的算法,能从其中看出优劣: 一.人脸识别 主要有以下两种实现方法: 1.哈尔(Haar)级联法:专门解决人脸识别而推出的传统算法: 实现步骤: 创建Haar级联器: 导入图片并将其灰度化: 调用函数接口进行人脸识别: 函数原型: detectMultiScale(img,scaleFactor,minNeighbors) sc

  • Python OpenCV绘制各类几何图形详解

    目录 一.绘制直线 二.绘制矩形 三.绘制圆形 四.绘制椭圆 五.绘制多边形 六.绘制文字 七.总结 一.绘制直线 在OpenCV中,绘制直线需要获取直线的起点和终点坐标,调用cv2.line()函数实现该功能.该函数原型如下所示: img = line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) – img表示需要绘制的那幅图像 – pt1表示线段第一个点的坐标 – pt2表示线段第二个点的坐标 – color表示线条颜色,需

  • Python图像处理之图像金字塔详解

    目录 一.图像金字塔原理 二.图像向上取样 三.图像向下取样 四.总结 一.图像金字塔原理 上一篇文章讲解的图像采样处理可以降低图像的大小,本文将补充图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩.一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合.如图10-1所示,它包括了四层图像,将

  • Python+OpenCV绘制灰度直方图详解

    1.直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比.图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征. 图像灰度直方图: 一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征.图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少.图像的灰度直方图是灰度级的函数,描述的是图像中

  • Python+OpenCV之形态学操作详解

    目录 一. 腐蚀与膨胀 1.1 腐蚀操作 1.2 膨胀操作 二. 开运算与闭运算 2.1 开运算 2.2 闭运算 三.梯度运算 四.礼帽与黑帽 4.1 礼帽 4.2 黑帽 一. 腐蚀与膨胀 1.1 腐蚀操作 import cv2 import numpy as np img = cv2.imread('DataPreprocessing/img/dige.png') cv2.imshow("img", img) cv2.waitKey(0) cv2.destroyAllWindows(

随机推荐