Java AQS中ReentrantReadWriteLock读写锁的使用

目录
  • 一. 简介
  • 二. 接口及实现类
  • 三.使用
  • 四. 应用场景
  • 五. 锁降级
  • 六.源码解析
  • 七.总结

一. 简介

为什么会使用读写锁?

日常大多数见到的对共享资源有读和写的操作,写操作并没有读操作那么频繁(读多写少),在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源(读读可以并发);但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写操作了(读写,写读,写写互斥)。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。

针对这种场景JAVA的并发包提供了读写锁ReentrantReadWriteLock,它内部维护了一对相关的锁,一个用于只读操作,称为读锁;一个用于写入操作,称为写锁。

线程进入读锁的前提条件:

  • 没有其他线程的写锁
  • 没有写请求或者有写请求,但调用线程和持有锁的线程是同一个。

线程进入写锁的前提条件:

  • 没有其他线程的读锁
  • 没有其他线程的写锁

而读写锁有以下三个重要的特性:

  • 公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。
  • 可重入:读锁和写锁都支持线程重入。以读写线程为例:读线程获取读锁后,能够再次获取读锁。写线程在获取写锁之后能够再次获取写锁,同时也可以获取读锁。
  • 锁降级:遵循获取写锁、再获取读锁最后释放写锁的次序,写锁能够降级成为读锁。

二. 接口及实现类

接口

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading
     */
    Lock readLock();
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing
     */
    Lock writeLock();
}

实现类

public class ReentrantReadWriteLock
        implements ReadWriteLock, java.io.Serializable {
    private static final long serialVersionUID = -6992448646407690164L;
    /** Inner class providing readlock */
    private final ReentrantReadWriteLock.ReadLock readerLock;
    /** Inner class providing writelock */
    private final ReentrantReadWriteLock.WriteLock writerLock;
    /** Performs all synchronization mechanics */
    final Sync sync;
    public ReentrantReadWriteLock() {
        this(false);
    }
    public ReentrantReadWriteLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }
    public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
    public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }

三.使用

private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
private Lock r = readWriteLock.readLock();
private Lock w = readWriteLock.writeLock();
// 读操作上读锁
public Data get(String key) {
  r.lock();
  try {
      // TODO 业务逻辑
  }finally {
       r.unlock();
   }
}
// 写操作上写锁
public Data put(String key, Data value) {
  w.lock();
  try {
      // TODO 业务逻辑
  }finally {
       w.unlock();
   }

四. 应用场景

ReentrantReadWriteLock适合读多写少的场景。

public class Cache {
    static Map<String, Object> map = new HashMap<String, Object>();
    static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    static Lock r = rwl.readLock();
    static Lock w = rwl.writeLock();
    // 获取一个key对应的value
    public static final Object get(String key) {
        r.lock();
        try {
            return map.get(key);
        } finally {
            r.unlock();
        }
    }
    // 设置key对应的value,并返回旧的value
    public static final Object put(String key, Object value) {
        w.lock();
        try {
            return map.put(key, value);
        } finally {
            w.unlock();
        }
    }
    // 清空所有的内容
    public static final void clear() {
        w.lock();
        try {
            map.clear();
        } finally {
            w.unlock();
        }
    }

上述示例中,Cache组合一个非线程安全的HashMap作为缓存的实现,同时使用读写锁的读锁和写锁来保证Cache是线程安全的。在读操作get(String key)方法中,需要获取读锁,这使得并发访问该方法时不会被阻塞。写操作put(String key,Object value)方法和clear()方法,在更新 HashMap时必须提前获取写锁,当获取写锁后,其他线程对于读锁和写锁的获取均被阻塞,而只有写锁被释放之后,其他读写操作才能继续。Cache使用读写锁提升读操作的并发性,也保证每次写操作对所有的读写操作的可见性,同时简化了编程方式

五. 锁降级

锁降级指的是写锁降级成为读锁。如果当前线程拥有写锁,然后将其释放,最后再获取读锁,这种分段完成的过程不能称之为锁降级。锁降级是指把持住(当前拥有的)写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。锁降级可以帮助我们拿到当前线程修改后的结果而不被其他线程所破坏,防止更新丢失。

示例

因为数据不常变化,所以多个线程可以并发地进行数据处理,当数据变更后,如果当前线程感知到数据变化,则进行数据的准备工作,同时其他处理线程被阻塞,直到当前线程完成数据的准备工作。

private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
private volatile boolean update = false;
public void processData() {
    readLock.lock();
    if (!update) {
        // 必须先释放读锁
        readLock.unlock();
        // 锁降级从写锁获取到开始
        writeLock.lock();
        try {
            if (!update) {
                // TODO 准备数据的流程(略)
                update = true;
            }
            readLock.lock();
        } finally {
            writeLock.unlock();
        }
        // 锁降级完成,写锁降级为读锁
    }
    try {
        //TODO  使用数据的流程(略)
    } finally {
        readLock.unlock();
    }
}

锁降级中读锁的获取是否必要呢?答案是必要的。主要是为了保证数据的可见性,如果当前线程不获取读锁而是直接释放写锁,假设此刻另一个线程(记作线程T)获取了写锁并修改了数据,那么当前线程无法感知线程T的数据更新。如果当前线程获取读锁,即遵循锁降级的步骤,则线程T将会被阻塞,直到当前线程使用数据并释放读锁之后,线程T才能获取写锁进行数据更新。

RentrantReadWriteLock不支持锁升级(把持读锁、获取写锁,最后释放读锁的过程)。目的也是保证数据可见性,如果读锁已被多个线程获取,其中任意线程成功获取了写锁并更新了数据,则其更新对其他获取到读锁的线程是不可见的。

六.源码解析

在 ReentrantLock 中,使用 Sync 的 int 类型的 state 来表示同步状态,表示锁被一个线程重复获取的次数。但是,读写锁 ReentrantReadWriteLock 内部维护着一对读写锁,如果要用一个变量维护多种状态,需要采用“按位切割使用”的方式来维护这个变量,将其切分为两部分:高16为表示读,低16为表示写。

分割之后,读写锁是如何迅速确定读锁和写锁的状态呢?通过位运算。假如当前同步状态为S,那么:

  • 写状态,等于 S & 0x0000FFFF(将高 16 位全部抹去)。 当写状态加1,等于S+1.
  • 读状态,等于 S >>> 16 (无符号补 0 右移 16 位)。当读状态加1,等于S+(1<<16),也就是S+0x00010000

根据状态的划分能得出一个推论:S不等于0时,当写状态(S&0x0000FFFF)等于0时,则读状态(S>>>16)大于0,即读锁已被获取。

通过ReentrantReadWriteLock的sync来实现

abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 6317671515068378041L;
        static final int SHARED_SHIFT   = 16;
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
        static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

exclusiveCount(int c) 静态方法,获得持有写状态的锁的次数。

sharedCount(int c) 静态方法,获得持有读状态的锁的线程数量。不同于写锁,读锁可以同时被多个线程持有。而每个线程持有的读锁支持重入的特性,所以需要对每个线程持有的读锁的数量单独计数,这就需要用到 HoldCounter 计数器

HoldCounter 计数器

读锁的内在机制其实就是一个共享锁。一次共享锁的操作就相当于对HoldCounter 计数器的操作。获取共享锁,则该计数器 + 1,释放共享锁,该计数器 - 1。只有当线程获取共享锁后才能对共享锁进行释放、重入操作。

  static final class HoldCounter {
            int count = 0;
            final long tid = getThreadId(Thread.currentThread());
        }
        static final class ThreadLocalHoldCounter
            extends ThreadLocal<HoldCounter> {
            public HoldCounter initialValue() {
                return new HoldCounter();
            }
        }

通过 ThreadLocalHoldCounter 类,HoldCounter 与线程进行绑定。HoldCounter 是绑定线程的一个计数器,而 ThreadLocalHoldCounter 则是线程绑定的 ThreadLocal。

  • HoldCounter是用来记录读锁重入数的对象
  • ThreadLocalHoldCounter是ThreadLocal变量,用来存放不是第一个获取读锁的线程的其他线程的读锁重入数对象

写锁的获取

写锁是一个支持重进入的排它锁。如果当前线程已经获取了写锁,则增加写状态。如果当前线程在获取写锁时,读锁已经被获取(读状态不为0)或者该线程不是已经获取写锁的线程, 则当前线程进入等待状态。

写锁的获取是通过重写AQS中的tryAcquire方法实现的。

protected final boolean tryAcquire(int acquires) {
    //当前线程
    Thread current = Thread.currentThread();
    //获取state状态   存在读锁或者写锁,状态就不为0
    int c = getState();
    //获取写锁的重入数
    int w = exclusiveCount(c);
    //当前同步状态state != 0,说明已经有其他线程获取了读锁或写锁
    if (c != 0) {
        // c!=0 && w==0 表示存在读锁
        // 当前存在读锁或者写锁已经被其他写线程获取,则写锁获取失败
        if (w == 0 || current != getExclusiveOwnerThread())
            return false;
        // 超出最大范围  65535
        if (w + exclusiveCount(acquires) > MAX_COUNT)
            throw new Error("Maximum lock count exceeded");
        //同步state状态
        setState(c + acquires);
        return true;
    }
    // writerShouldBlock有公平与非公平的实现, 非公平返回false,会尝试通过cas加锁
    //c==0 写锁未被任何线程获取,当前线程是否阻塞或者cas尝试获取锁
    if (writerShouldBlock() ||
        !compareAndSetState(c, c + acquires))
        return false;
    //设置写锁为当前线程所有
    setExclusiveOwnerThread(current);
    return true;

通过源码我们可以知道:

  • 读写互斥
  • 写写互斥
  • 写锁支持同一个线程重入
  • writerShouldBlock写锁是否阻塞实现取决公平与非公平的策略(FairSync和NonfairSync)

大致流程如下:

写锁的释放

写锁释放通过重写AQS的tryRelease方法实现

protected final boolean tryRelease(int releases) {
    //若锁的持有者不是当前线程,抛出异常
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    int nextc = getState() - releases;
    //当前写状态是否为0,为0则释放写锁
    boolean free = exclusiveCount(nextc) == 0;
    if (free)
        setExclusiveOwnerThread(null);
    setState(nextc);
    return free;

流程如下:

读锁的获取

实现共享式同步组件的同步语义需要通过重写AQS的tryAcquireShared方法和tryReleaseShared方法。读锁的获取实现方法为:

protected final int tryAcquireShared(int unused) {
    Thread current = Thread.currentThread();
    int c = getState();
    // 如果写锁已经被获取并且获取写锁的线程不是当前线程,当前线程获取读锁失败返回-1   判断锁降级
    if (exclusiveCount(c) != 0 &&
        getExclusiveOwnerThread() != current)
        return -1;
    //计算出读锁的数量
    int r = sharedCount(c);
    /**
    * 读锁是否阻塞    readerShouldBlock()公平与非公平的实现
    * r < MAX_COUNT: 持有读锁的线程小于最大数(65535)
    *  compareAndSetState(c, c + SHARED_UNIT) cas设置获取读锁线程的数量
    */
    if (!readerShouldBlock() &&
        r < MAX_COUNT &&
        compareAndSetState(c, c + SHARED_UNIT)) {   //当前线程获取读锁

        if (r == 0) {  //设置第一个获取读锁的线程
            firstReader = current;
            firstReaderHoldCount = 1;  //设置第一个获取读锁线程的重入数
        } else if (firstReader == current) { // 表示第一个获取读锁的线程重入
            firstReaderHoldCount++;
        } else { // 非第一个获取读锁的线程
            HoldCounter rh = cachedHoldCounter;
            if (rh == null || rh.tid != getThreadId(current))
                cachedHoldCounter = rh = readHolds.get();
            else if (rh.count == 0)
                readHolds.set(rh);
            rh.count++;  //记录其他获取读锁的线程的重入次数
        }
        return 1;
    }
    // 尝试通过自旋的方式获取读锁,实现了重入逻辑
    return fullTryAcquireShared(current);
  • 读锁共享,读读不互斥
  • 读锁可重入,每个获取读锁的线程都会记录对应的重入数
  • 读写互斥,锁降级场景除外
  • 支持锁降级,持有写锁的线程,可以获取读锁,但是后续要记得把读锁和写锁读释放
  • readerShouldBlock读锁是否阻塞实现取决公平与非公平的策略(FairSync和NonfairSync)

流程如下:

读锁的释放

获取到读锁,执行完临界区后,要记得释放读锁(如果重入多次要释放对应的次数),不然会阻塞其他线程的写操作。

读锁释放的实现主要通过方法tryReleaseShared:

protected final boolean tryReleaseShared(int unused) {
    Thread current = Thread.currentThread();
    //如果当前线程是第一个获取读锁的线程
    if (firstReader == current) {
        // assert firstReaderHoldCount > 0;
        if (firstReaderHoldCount == 1)
            firstReader = null;
        else
            firstReaderHoldCount--; //重入次数减1
    } else {  //不是第一个获取读锁的线程
        HoldCounter rh = cachedHoldCounter;
        if (rh == null || rh.tid != getThreadId(current))
            rh = readHolds.get();
        int count = rh.count;
        if (count <= 1) {
            readHolds.remove();
            if (count <= 0)
                throw unmatchedUnlockException();
        }
        --rh.count;  //重入次数减1
    }
    for (;;) {  //cas更新同步状态
        int c = getState();
        int nextc = c - SHARED_UNIT;
        if (compareAndSetState(c, nextc))
            // Releasing the read lock has no effect on readers,
            // but it may allow waiting writers to proceed if
            // both read and write locks are now free.
            return nextc == 0;
    }

流程如下:

七.总结

本文主要讲解ReentrantReadWriteLock的使用,读写锁设计的原理,锁降级,应用场景及源码解析,重点解析了写锁的获取和释放,读锁的获取和释放,深层次的理解读写锁是怎样实现分别记录读写状态的,以及读写锁的获取及释放。

到此这篇关于Java AQS中ReentrantReadWriteLock读写锁的使用的文章就介绍到这了,更多相关Java ReentrantReadWriteLock内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • AQS加锁机制Synchronized相似点详解

    目录 正文 1. Synchronized加锁流程 2. AQS加锁原理 3. 总结 正文 在并发多线程的情况下,为了保证数据安全性,一般我们会对数据进行加锁,通常使用Synchronized或者ReentrantLock同步锁.Synchronized是基于JVM实现,而ReentrantLock是基于Java代码层面实现的,底层是继承的AQS. AQS全称 AbstractQueuedSynchronizer ,即抽象队列同步器,是一种用来构建锁和同步器的框架. 我们常见的并发锁Reentr

  • Java AQS中ReentrantLock条件锁的使用

    目录 一.什么是AQS 1.定义 2.特性 3.属性 4.资源共享方式 5.两种队列 6.队列节点状态 7.实现方法 二.等待队列 1.同步等待队列 2.条件等待队列 三.condition接口 四.ReentrantLock 五.源码解析 一.什么是AQS 1.定义 java.util.concurrent包中的大多数同步器实现都是围绕着共同的基础行为,比如等待队列.条件队列.独占获取.共享获取等,而这些行为的抽象就是基于AbstractQueuedSynchronizer(简称AQS)实现的

  • AQS核心流程解析cancelAcquire方法

    目录 引出问题 更新正常节点的链表 当前取消节点是tail节点的情况 当前取消节点是非tail节点的情况 引出问题 首先,先考虑一个问题,什么条件会触发cancelAcquire()方法? cancelAcquire()方法的反向查找 可以清楚的看到在互斥锁和共享锁的拿锁过程中都是有调用此方法的,而cancelAcquire()方法是写在finally代码块中,并且使用failed标志位来控制cancelAcquire()方法的执行.可以得出,在触发异常的情况下会执行cancelAcquire(

  • Java AQS信号量Semaphore的使用

    目录 一.什么是Semaphore 二.Semaphore的使用 三.Semaphore源码分析 一.什么是Semaphore Semaphore,俗称信号量,它是操作系统中PV操作的原语在java的实现,它也是基于AbstractQueuedSynchronizer实现的. Semaphore的功能非常强大,大小为1的信号量就类似于互斥锁,通过同时只能有一个线程获取信号量实现.大小为n(n>0)的信号量可以实现限流的功能,它可以实现只能有n个线程同时获取信号量. PV操作是操作系统一种实现进程

  • Java AQS中闭锁CountDownLatch的使用

    目录 一. 简介 二. 使用 三. 应用场景 四. 底层原理 五. CountDownLatch与Thread.join的区别 一. 简介 CountDownLatch(闭锁)是一个同步协助类,允许一个或多个线程等待,直到其他线程完成操作集. CountDownLatch使用给定的计数值(count)初始化.await方法会阻塞直到当前的计数值(count)由于countDown方法的调用达到0,count为0之后所有等待的线程都会被释放,并且随后对await方法的调用都会立即返回.这是一个一次

  • 详解Java ReentrantReadWriteLock读写锁的原理与实现

    目录 概述 原理概述 加锁原理 图解过程 源码解析 解锁原理 图解过程 源码解析 概述 ReentrantReadWriteLock读写锁是使用AQS的集大成者,用了独占模式和共享模式.本文和大家一起理解下ReentrantReadWriteLock读写锁的实现原理.在这之前建议大家阅读下下面3篇关联文章: 深入浅出理解Java并发AQS的独占锁模式 深入浅出理解Java并发AQS的共享锁模式 通俗易懂读写锁ReentrantReadWriteLock的使用 原理概述 上图是ReentrantR

  • Java利用StampedLock实现读写锁的方法详解

    目录 概述 StampedLock介绍 演示例子 性能对比 总结 概述 想到读写锁,大家第一时间想到的可能是ReentrantReadWriteLock.实际上,在jdk8以后,java提供了一个性能更优越的读写锁并发类StampedLock,该类的设计初衷是作为一个内部工具类,用于辅助开发其它线程安全组件,用得好,该类可以提升系统性能,用不好,容易产生死锁和其它莫名其妙的问题.本文主要和大家一起学习下StampedLock的功能和使用. StampedLock介绍 StampedLock的状态

  • Java多线程编程之读写锁ReadWriteLock用法实例

    读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可.如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁:如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁.总之,读的时候上读锁,写的时候上写锁! 三个线程读数据,三个线程写数据示例: 可以同时读,读的时候不能写,不能同时写,写的时候不能读. 读的时候上读锁,读完解锁:写的时候上写锁,写完解锁. 注意finally解锁. package com.ljq.test.th

  • ReentrantReadWriteLock 读写锁分析总结

    目录 一.读写锁简介 二.读写锁使用 ReadWriteLock 接口 使用例子 三.锁的降级 锁降级的使用示例 四.ReentranReadWriteLock 结构 方法结构设计 读写状态设计 五.源码分析 写锁的加锁 写锁的释放 读锁的获取 读锁的释放 一.读写锁简介 现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁(读多写少).在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源(读读可以并发):但是如果一个线程想去写这些共

  • Java中读写锁ReadWriteLock的原理与应用详解

    目录 什么是读写锁? 为什么需要读写锁? 读写锁的特点 读写锁的使用场景 读写锁的主要成员和结构图 读写锁的实现原理 读写锁总结 Java并发编程提供了读写锁,主要用于读多写少的场景,今天我就重点来讲解读写锁的底层实现原理 什么是读写锁? 读写锁并不是JAVA所特有的读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的. 所谓的读

  • Java多线程编程中线程锁与读写锁的使用示例

    线程锁Lock Lock  相当于 当前对象的 Synchronized import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /* * Lock lock = new ReentrantLock(); * lock.lock(); lock.unLock(); * 类似于 synchronized,但不能与synchronized 混用 */ public class L

  • java并发编程中ReentrantLock可重入读写锁

    目录 一.ReentrantLock可重入锁 二.ReentrantReadWriteLock读写锁 三.读锁之间不互斥 一.ReentrantLock可重入锁 可重入锁ReentrantLock 是一个互斥锁,即同一时间只有一个线程能够获取锁定资源,执行锁定范围内的代码.这一点与synchronized 关键字十分相似.其基本用法代码如下: Lock lock = new ReentrantLock(); //实例化锁 //lock.lock(); //上锁 boolean locked =

  • Java读写锁ReadWriteLock原理与应用场景详解

    Java并发编程提供了读写锁,主要用于读多写少的场景 什么是读写锁? 读写锁并不是JAVA所特有的读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的. 所谓的读写锁(Readers-Writer Lock),顾名思义就是将一个锁拆分为读锁和写锁两个锁. 其中读锁允许多个线程同时获得,而写锁则是互斥锁,不允许多个线程同时获得写锁,

  • Java编程读写锁详解

    ReadWriteLock也是一个接口,提供了readLock和writeLock两种锁的操作机制,一个资源可以被多个线程同时读,或者被一个线程写,但是不能同时存在读和写线程. 基本规则: 读读不互斥 读写互斥 写写互斥 问题: 既然读读不互斥,为何还要加读锁 答: 如果只是读,是不需要加锁的,加锁本身就有性能上的损耗 如果读可以不是最新数据,也不需要加锁 如果读必须是最新数据,必须加读写锁 读写锁相较于互斥锁的优点仅仅是允许读读的并发,除此之外并无其他. 结论: 读写锁能够保证读取数据的 严格

随机推荐