Java常用排序算法及性能测试集合
现在再回过头理解,结合自己的体会, 选用最佳的方式描述这些算法,以方便理解它们的工作原理和程序设计技巧。本文适合做java面试准备的材料阅读。
先附上一个测试报告:
Array length: 20000
bubbleSort : 766 ms
bubbleSortAdvanced : 662 ms
bubbleSortAdvanced2 : 647 ms
selectSort : 252 ms
insertSort : 218 ms
insertSortAdvanced : 127 ms
insertSortAdvanced2 : 191 ms
binaryTreeSort : 3 ms
shellSort : 2 ms
shellSortAdvanced : 2 ms
shellSortAdvanced2 : 1 ms
mergeSort : 3 ms
quickSort : 1 ms
heapSort : 2 ms
通过测试,可以认为,冒泡排序完全有理由扔进垃圾桶。它存在的唯一理由可能是最好理解。希尔排序的高效性是我没有想到的;堆排序比较难理解和编写,要有宏观的思维。
package algorithm.sort;
import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.Date;
/**
* Java常用排序算法及性能测试集合
*
* 本程序集合涵盖常用排序算法的编写,并在注释中配合极其简单的特例讲解了各种算法的工作原理,以方便理解和吸收;
* 程序编写过程中吸收了很多维基百科和别人blog上面的例子,并结合自己的思考,选择并改进一个最容易让人理解的写法
*(尤其是快速排序,我觉得我写的算法最好理解)。
* 同时包含一个集中式的性能测试和正确性测试方法,方便观测。
* @author /link.php?url=http://blog.csdn.net/sunxing007
* 转载请注明来自/link.php?url=http://blog.csdn.net/sunxing007
*/
public class SortUtil {
// 被测试的方法集合
static String[] methodNames = new String[]{
"bubbleSort",
"bubbleSortAdvanced",
"bubbleSortAdvanced2",
"selectSort",
"insertSort",
"insertSortAdvanced",
"insertSortAdvanced2",
"binaryTreeSort",
"shellSort",
"shellSortAdvanced",
"shellSortAdvanced2",
"mergeSort",
"quickSort",
"heapSort"
};
public static void main(String[] args) throws Exception{
//correctnessTest();
performanceTest(20000);
}
/**
* 正确性测试<br>
* 简单地测试一下各个算法的正确性<br>
* 只是为了方便观测新添加的算法是否基本正确;<br>
* @throws Exception 主要是反射相关的Exception;<br>
*/
public static void correctnessTest() throws Exception{
int len = 10;
int[] a = new int[len];
for(int i=0; i<methodNames.length; i++){
for(int j=0; j<a.length; j++){
a[j] = (int)Math.floor(Math.random()*len*2);
}
Method sortMethod = null;
sortMethod = SortUtil.class.getDeclaredMethod(methodNames[i], a.getClass());
Object o = sortMethod.invoke(null, a);
System.out.print(methodNames[i] + " : ");
if(o==null){
System.out.println(Arrays.toString(a));
}
else{
//兼顾mergeSort,它的排序结果以返回值的形式出现;
System.out.println(Arrays.toString((int[])o));
}
}
}
/**
* 性能测试<br>
* 数组长度用参数len传入,每个方法跑20遍取耗时平均值;<br>
* @param len 数组长度 建议取10000以上,否则有些算法会显示耗时为0;<br>
* @throws Exception 主要是反射相关的Exception;<br>
*/
public static void performanceTest(int len) throws Exception{
int[] a = new int[len];
int times = 20;
System.out.println("Array length: " + a.length);
for(int i=0; i<methodNames.length; i++){
Method sortMethod = null;
sortMethod = SortUtil.class.getDeclaredMethod(methodNames[i], a.getClass());
int totalTime = 0;
for(int j=0; j<times; j++){
for(int k=0; k<len; k++){
a[k] = (int)Math.floor(Math.random()*20000);
}
long start = new Date().getTime();
sortMethod.invoke(null, a);
long end = new Date().getTime();
totalTime +=(end-start);
}
System.out.println(methodNames[i] + " : " + (totalTime/times) + " ms");
//System.out.println(Arrays.toString(a));
}
}
/**
* 最原始的冒泡交换排序;<br>
* 两层遍历,外层控制扫描的次数,内层控制比较的次数;<br>
* 外层每扫描一次,就有一个最大的元素沉底;所以内层的比较次数将逐渐减小;<br>
*/
public static void bubbleSort(int[] a){
for(int i=0; i<a.length; i++){
for(int j=0; j<a.length-i-1; j++){
if(a[j]>a[j+1]){
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
}
}
}
}
/**
* 改进的冒泡法<br>
* 改进之处在于:设一个标志位,如果某趟跑下来,没有发生交换,说明已经排好了;<br>
*/
public static void bubbleSortAdvanced(int[] a){
int k = a.length-1;
boolean flag = true;
while(flag){
flag = false;
for(int i=0;i<k;i++){
if(a[i]>a[i+1]){
int tmp = a[i];
a[i] = a[i+1];
a[i+1] = tmp;
//有交换则继续保持标志位;
flag = true;
}
}
k--;
}
}
/**
* 改进的冒泡法2<br>
* 改进之处在于吸收上面的思想(没有交换意味着已经有序),如果局部的已经是有序的,则后续的比较就不需要再比较他们了。<br>
* 比如:3142 5678,假如刚刚做完了2和4交换之后,发现这趟比较后续再也没有发生交换,则后续的比较只需要比到4即可;<br>
* 该算法就是用一个标志位记录某趟最后发生比较的地点;<br>
*/
public static void bubbleSortAdvanced2(int[] a){
int flag = a.length - 1;
int k;
while(flag>0){
k = flag;
flag = 0;
for(int i=0; i<k; i++){
if(a[i] > a[i+1]){
int tmp = a[i];
a[i] = a[i+1];
a[i+1] = tmp;
//有交换则记录该趟最后发生比较的地点;
flag = i+1;
}
}
}
}
/**
* 插入排序
*
* 关于插入排序,这里有几个约定,从而可以快速理解算法:<br>
* i: 无序表遍历下标;i<n-1;<br>
* j: 有序表遍历下表;0<=j<i;<br>
* a[i]:表示当前被拿出来做插入排序的无序表头元素;<br>
* a[j]:有序表中的任意元素;<br>
* <br>
* 算法关键点:把数组分割为a[0~i-1]有序表,a[i~n-1]无序表;每次从无序表头部取一个,<br>
* 把它插入到有序表适当的位置,直到无序表为空;<br>
* 初始时,a[0]为有序表,a[1~n-1]为无序表;<br>
*/
public static void insertSort(int[] a){
//从无序表头开始遍历;
for(int i=1; i<a.length; i++){
int j;
//拿a[i]和有序表元素依次比较,找到一个恰当的位置;
for(j=i-1;j>=0; j--){
if(a[j] < a[i]){
break;
}
}
//如果找到恰当的位置,则从该位置开始,把元素朝后移动一格,为插入的元素腾出空间;
if(j!=(i-1)){
int tmp = a[i];
int k;
for(k = i-1; k>j;k--){
a[k+1] = a[k];
}
a[k+1] = tmp;
}
}
}
/**
* 改进的插入排序1
* 改进的关键在于:首先拿无序表头元素a[i]和有序表尾a[i-1]比较,
* 如果a[i]<a[i-1],说明需要调整;调整的过程为:
* 从有序表尾开始,把有序表里面比a[i]大的元素都朝后移动,直到找到恰当的位置;
*/
public static void insertSortAdvanced(int[] a){
//遍历无序表;
for(int i=1; i<a.length; i++){
//如果无序表头元素小于有序表尾,说明需要调整;
if(a[i]<a[i-1]){
int tmp = a[i];
int j;
//从有序表尾朝前搜索并比较,并把大于a[i]的元素朝后移动以腾出空间;
for(j=i-1; j>=0&&a[j]>tmp;j--){
a[j+1] = a[j];
}
a[j+1] = tmp;
}
}
}
/**
* 改进的插入排序2
* 总体思想和上面相似,拿无序表头元素从有序表尾元素开始朝前比较,
* 如果a[i]比a[i-1]小,则把a[i]从有序表尾用冒泡交换的方式朝前移动,直到到达恰当的位置;
*/
public static void insertSortAdvanced2(int[] a){
//遍历无序表
for(int i=1; i<a.length; i++){
//拿a[i]从有序表尾开始冒泡;
for(int j=i-1; j>=0 && a[j] > a[j+1]; j--){//a[j+1]就是a[i]
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
}
}
}
/**
* 快速排序<br>
* 算法的思想在于分而治之:先找一个元素(一般来说都是数组头元素),把比它大的都放到右边,把比它小的都放到左边;<br>
* 然后再按照这样的思想去处理两个子数组; 下面说的子数组头元素通指用来划分数组的元素;<br>
* <br>
* 下面程序关键点就在于!forward, low0++, high0--这些运算; 这三个运算使得a[low0],a[high0]里面总有一个指向子数组头元素; <br>
* 可以用极端的情况来方便理解这三个值的运作: <br>
* 假如我的数列为0123456789, 初始时forward=false,0作为子数组划分依据,很显然第一轮的时候不会发生任何交换,low0一直指向0,<br>
* high0逐渐下降直到它指向0为止; 同理可思考9876543210这个例子;<br>
* <br>
* @param a 待排序数组<br>
* @param low 子数组开始的下标;<br>
* @param high 子数组结束的下标;<br>
*/
public static void quickSort(int[] a, int low, int high){
if(low>=high){
return;
}
int low0 = low;
int high0 = high;
boolean forward = false;
while(low0!=high0){
if(a[low0]>a[high0]){
int tmp = a[low0];
a[low0] = a[high0];
a[high0] = tmp;
forward = !forward;
}
if(forward){
low0++;
}
else{
high0--;
}
}
low0--;
high0++;
quickSort(a, low, low0);
quickSort(a, high0, high);
}
/**
* 快速排序的简单调用形式<br>
* 方便测试和调用<br>
* @param a
*/
public static void quickSort(int[] a){
quickSort(a, 0, a.length-1);
}
/**
* 归并排序<br>
* 所谓归并,就是合并两个有序数组;归并排序也用了分而治之的思想,把一个数组分为若干个子数组;<br>
* 当子数组的长度为1的时候,则子数组是有序的,于是就可以两两归并了;<br>
* <br>
* 由于归并排序需要分配空间来转储归并的结果,为了算法上的方便,归并算法的结果以返回值的形式出现;<br>
*/
/**
* 合并两个有序数组
* @param a 有序数组1
* @param b 有序数组2
* @return 合并之后的有序数组;
*/
public static int[] merge(int[] a, int[] b){
int result[] = new int[a.length+b.length];
int i=0,j=0,k=0;
while(i<a.length&&j<b.length){
if(a[i]<b[j]){
result[k++] = a[i];
i++;
}
else{
result[k++] = b[j];
j++;
}
}
while(i<a.length){
result[k++] = a[i++];
}
while(j<b.length){
result[k++] = b[j++];
}
return result;
}
/**
* 归并排序<br>
* 把数组从中间一分为二,并对左右两部分递归调用,直到数组长度为1的时候,开始两两归并;<br>
* @param 待排序数组;
* @return 有序数组;
*/
public static int[] mergeSort(int[] a){
if(a.length==1){
return a;
}
int mid = a.length/2;
int[] leftPart = new int[mid];
int[] rightPart = new int[a.length-mid];
System.arraycopy(a, 0, leftPart, 0, leftPart.length);
System.arraycopy(a, mid, rightPart, 0, rightPart.length);
leftPart = mergeSort(leftPart);
rightPart = mergeSort(rightPart);
return merge(leftPart, rightPart);
}
/**
* 选择排序<br>
* 和插入排序类似,它也把数组分割为有序区和无序区,所不同的是:<br>
* 插入排序是拿无序区的首元素插入到有序区适当的位置,而<br>
* 选择排序是从无序区中挑选最小的放到有序区最后;<br>
* <br>
* 两层循环,外层控制有序区的队尾,内层用来查找无序区最小元素;<br>
* @param a
*/
public static void selectSort(int[] a){
for(int i=0; i<a.length; i++){
int minIndex = i;
for(int j=i+1; j<a.length; j++){
if(a[j]<a[minIndex]){
minIndex = j;
}
}
int tmp = a[i];
a[i] = a[minIndex];
a[minIndex]= tmp;
}
}
/**
* 希尔排序<br>
* 其思想是把数组按等步长(/间距)划分为多个子序列,对各个子序列做普通的插入排序,<br>逐次降低步长,直到为1的时候最后再做一次普通的插入排序;
* 用一个极端的例子作比方,我有数列如下:<br>
* [1,2,3,4,5,6,7,8,9,10];<br>
* 初始的时候,步长gap=5;则划分的子数组为[1,6], [2,7], [3,8], [4,9], [5,10];<br>对他们分别排序(当然由于本数组特殊,所以结果是不变的);<br>
* 然后gap=2=5/2; 子数组为[1,3,5,7,9], [2,4,6,8,10]; <br>
* 最后gap=1=2/2; 做一次全局排序;<br>
* <br>
* 希尔排序克服了插入/冒泡排序的弱点(一次只能把元素移动一个相邻的位置), <br>依靠大步长,可以把元素尽快移动到目标位置(或附近);<br>
* 希尔排序实际上是插入排序的变种。它适用于:当数组总体有序,个别需要调整的情况;这时候利用插入排序的优势,可以达到O(n)的效率;<br>
* 影响希尔算法的一个重要的因素是步长选择,一个好步长的优点是:后面的短步长排序不会破坏前面的长步长排序;<br>
* 怎么理解这种破坏呢?前面的长步长把一个较小的数移到了左面,但是在缩小步长之后有可能又被交换到了右面 (因为它被分到了一个有很多比它更小的组);<br>
* 关于步长,可以查看http://zh.wikipedia.org上面关于希尔排序的页面;<br>
* 下面的程序是希尔排序最基础的写法,适合用来理解希尔排序思想;<br>
*/
public static void shellSort(int[] a){
// 控制间距;间距逐渐减小,直到为1;
for(int gap = a.length/2; gap>0; gap/=2){
// 扫描每个子数组
for(int i=0; i<gap; i++){
// 对每个字数组,扫描无序区;注意增量;
// a[i]是初始有序区;
for(int j=i+gap; j<a.length; j+=gap){
// 无序区首元素小于有序区尾元素,说明需要调整
if(a[j]<a[j-gap]){
int tmp = a[j];
int k = j-gap;
//从有序区尾向前搜索查找适当的位置;
while(k>=0&&a[k]>tmp){
a[k+gap] = a[k];
k-=gap;
}
a[k+gap] = tmp;
}
}
}
}
}
/**
* 改进的希尔排序<br>
* 改进之处在于:上面的写法用一个for循环来区别对待每个字数组;而实际上是不必要的;<br>
* a[0,1,...gap-1]作为所有子数组的有序区,a[gap,...n-1]作为所有字数组的无序区;<br>
* <br>
* 该改进在时间效率上没有改进;只是让程序看起来更简洁;<br>
* @param a
*/
public static void shellSortAdvanced(int[] a){
// 控制步长
for(int gap = a.length/2; gap>0; gap/=2){
// 从无序区开始处理,把多个子数组放在一起处理;
for(int j=gap; j<a.length; j++){
// 下面的逻辑和上面是一样的;
if(a[j]<a[j-gap]){
int tmp = a[j];
int k = j-gap;
while(k>=0&&a[k]>tmp){
a[k+gap] = a[k];
k-=gap;
}
a[k+gap] = tmp;
}
}
}
}
/**
* 改进的希尔排序2<br>
* 在吸收shellSortAdvanced思想的基础上,采用insertAdvanced2的做法;<br>即无序区首元素通过朝前冒泡的形式移动的适当的位置;<br>
* @param a
*/
public static void shellSortAdvanced2(int[] a){
for(int gap = a.length/2; gap>0; gap/=2){
for(int i=gap; i<a.length; i++){
if(a[i]<a[i-gap]){
for(int j=i-gap; j>=0&&a[j+gap]>a[j]; j-=gap){
int tmp = a[j];
a[j] = a[j+gap];
a[j+gap] = tmp;
}
}
}
}
}
/**
* 堆排序<br>
* 堆的定义:堆是一个完全,或近似完全的二叉树,堆顶元素的值大于左右孩子的值,左右孩子也需要满足这个条件;<br>
* 按照堆的定义,堆可以是大顶堆(maxHeap),或小顶堆(minHeap);<br>
* 一般用数组即可模拟二叉树,对于任意元素i,左孩子为2*i+1,右孩子为2*i+2;父节点为(i-1)/2;
* @param a
*/
public static void heapSort(int[] a){
// 先从最后一个非叶子节点往上调整,使满足堆结构;
for(int i=(a.length-2)/2; i>=0; i--){
maxHeapAdjust(a, i, a.length);
}
// 每次拿最后一个节点和第一个交换,然后调整堆;直到堆顶;
for(int i=a.length-1; i>0; i--){
int tmp = a[i]; a[i] = a[0]; a[0] = tmp;
maxHeapAdjust(a, 0, i);
}
}
/**
* 调整堆<br>
* 把以i为跟节点的二叉树调整为堆;<br>
* 可以这么来思考这个过程:这个完全二叉树就像一个金字塔,塔顶的小元素沿着树结构,往下沉降;<br>
* 调整的结果是最大的元素在金字塔顶,然后把它从堆中删除(把它交换到堆尾,然后堆收缩一格);<br>
* 堆排序快的原因就是根据二叉树的特点,一个节点要沉降到合适的位置,只需要logn步;同时前期调整的结果(大小顺序)会被记录下来,从而加快后续的调整;<br>
* @param a 待排数组
* @param i 堆顶
* @param len 堆长度
*/
public static void maxHeapAdjust(int[] a, int i, int len){
int tmp = a[i];
// j是左孩子节点
int j = i*2+1;
//
while(j<len){
// 从左右孩子中挑选大的
// j+1是右孩子节点
if((j+1)<len && a[j+1]>a[j]){
j++;
}
// 找到恰当的位置就不再找
if(a[j]<tmp){
break;
}
// 否则把较大者沿着树往上移动;
a[i] = a[j];
// i指向刚才的较大的孩子;
i = j;
// j指向新的左孩子节点;
j = 2*i + 1;
}
// 把要调整的节点值下沉到适当的位置;
a[i] = tmp;
}
/**
* 二叉树排序<br>
* 二叉树的定义是嵌套的:<br>节点的值大于左叶子节点的值,小于右叶子节点的值;叶子节点同样满足这个要求;<br>
* 二叉树的构造过程就是排序的过程:<br>
* 先构造跟节点,然后调用add方法添加后续节点为跟节点的子孙节点;这个过程也是嵌套的;<br>
* <br>
* 中序遍历二叉树即得到有序结果;<br>
* 二叉树排序用法特殊,使用情形要视情况而定;<br>
* @param a
*/
public static void binaryTreeSort(int[] a){
// 构造一个二叉树节点内部类来实现二叉树排序算法;
class BinaryNode{
int value;
BinaryNode left;
BinaryNode right;
public BinaryNode(int value){
this.value = value;
this.left = null;
this.right = null;
}
public void add(int value){
if(value>this.value){
if(this.right!=null){
this.right.add(value);
}
else{
this.right = new BinaryNode(value);
}
}
else{
if(this.left!=null){
this.left.add(value);
}
else{
this.left = new BinaryNode(value);
}
}
}
/**
* 按中序遍历二叉树,就是有序的。
*/
public void iterate(){
if(this.left!=null){
this.left.iterate();
}
// 在测试的时候要把输出关掉,以免影响性能;
// System.out.print(value + ", ");
if(this.right!=null){
this.right.iterate();
}
}
}
BinaryNode root = new BinaryNode(a[0]);
for(int i=1; i<a.length; i++){
root.add(a[i]);
}
root.iterate();
}
}