Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析

在前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中,介绍了在Android系统中Binder进程间通信机制中的Server角色是如何获得Service Manager远程接口的,即defaultServiceManager函数的实现。Server获得了Service Manager远程接口之后,就要把自己的Service添加到Service Manager中去,然后把自己启动起来,等待Client的请求。本文将通过分析源代码了解Server的启动过程是怎么样的。

本文通过一个具体的例子来说明Binder机制中Server的启动过程。我们知道,在Android系统中,提供了多媒体播放的功能,这个功能是以服务的形式来提供的。这里,我们就通过分析MediaPlayerService的实现来了解Media Server的启动过程。

首先,看一下MediaPlayerService的类图,以便我们理解下面要描述的内容。

我们将要介绍的主角MediaPlayerService继承于BnMediaPlayerService类,熟悉Binder机制的同学应该知道BnMediaPlayerService是一个Binder Native类,用来处理Client请求的。BnMediaPlayerService继承于BnInterface<IMediaPlayerService>类,BnInterface是一个模板类,它定义在frameworks/base/include/binder/IInterface.h文件中:

template<typename INTERFACE>
class BnInterface : public INTERFACE, public BBinder
{
public:
 virtual sp<IInterface>  queryLocalInterface(const String16& _descriptor);
 virtual const String16&  getInterfaceDescriptor() const; 

protected:
 virtual IBinder*   onAsBinder();
};

这里可以看出,BnMediaPlayerService实际是继承了IMediaPlayerService和BBinder类。IMediaPlayerService和BBinder类又分别继承了IInterface和IBinder类,IInterface和IBinder类又同时继承了RefBase类。

实际上,BnMediaPlayerService并不是直接接收到Client处发送过来的请求,而是使用了IPCThreadState接收Client处发送过来的请求,而IPCThreadState又借助了ProcessState类来与Binder驱动程序交互。有关IPCThreadState和ProcessState的关系,可以参考上一篇文章Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路,接下来也会有相应的描述。IPCThreadState接收到了Client处的请求后,就会调用BBinder类的transact函数,并传入相关参数,BBinder类的transact函数最终调用BnMediaPlayerService类的onTransact函数,于是,就开始真正地处理Client的请求了。

了解了MediaPlayerService类结构之后,就要开始进入到本文的主题了。

首先,看看MediaPlayerService是如何启动的。启动MediaPlayerService的代码位于frameworks/base/media/mediaserver/main_mediaserver.cpp文件中:

int main(int argc, char** argv)
{
 sp<ProcessState> proc(ProcessState::self());
 sp<IServiceManager> sm = defaultServiceManager();
 LOGI("ServiceManager: %p", sm.get());
 AudioFlinger::instantiate();
 MediaPlayerService::instantiate();
 CameraService::instantiate();
 AudioPolicyService::instantiate();
 ProcessState::self()->startThreadPool();
 IPCThreadState::self()->joinThreadPool();
}

这里我们不关注AudioFlinger和CameraService相关的代码。
       先看下面这句代码:

sp<ProcessState> proc(ProcessState::self());

这句代码的作用是通过ProcessState::self()调用创建一个ProcessState实例。ProcessState::self()是ProcessState类的一个静态成员变量,定义在frameworks/base/libs/binder/ProcessState.cpp文件中:

sp<ProcessState> ProcessState::self()
{
 if (gProcess != NULL) return gProcess; 

 AutoMutex _l(gProcessMutex);
 if (gProcess == NULL) gProcess = new ProcessState;
 return gProcess;
}

这里可以看出,这个函数作用是返回一个全局唯一的ProcessState实例gProcess。全局唯一实例变量gProcess定义在frameworks/base/libs/binder/Static.cpp文件中:

Mutex gProcessMutex; 
                        sp<ProcessState> gProcess;

再来看ProcessState的构造函数:

ProcessState::ProcessState()
 : mDriverFD(open_driver())
 , mVMStart(MAP_FAILED)
 , mManagesContexts(false)
 , mBinderContextCheckFunc(NULL)
 , mBinderContextUserData(NULL)
 , mThreadPoolStarted(false)
 , mThreadPoolSeq(1)
{
 if (mDriverFD >= 0) {
  // XXX Ideally, there should be a specific define for whether we
  // have mmap (or whether we could possibly have the kernel module
  // availabla).
#if !defined(HAVE_WIN32_IPC)
  // mmap the binder, providing a chunk of virtual address space to receive transactions.
  mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
  if (mVMStart == MAP_FAILED) {
   // *sigh*
   LOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");
   close(mDriverFD);
   mDriverFD = -1;
  }
#else
  mDriverFD = -1;
#endif
 }
 if (mDriverFD < 0) {
  // Need to run without the driver, starting our own thread pool.
 }
}

这个函数有两个关键地方,一是通过open_driver函数打开Binder设备文件/dev/binder,并将打开设备文件描述符保存在成员变量mDriverFD中;二是通过mmap来把设备文件/dev/binder映射到内存中。

先看open_driver函数的实现,这个函数同样位于frameworks/base/libs/binder/ProcessState.cpp文件中:

static int open_driver()
{
 if (gSingleProcess) {
  return -1;
 } 

 int fd = open("/dev/binder", O_RDWR);
 if (fd >= 0) {
  fcntl(fd, F_SETFD, FD_CLOEXEC);
  int vers;
#if defined(HAVE_ANDROID_OS)
  status_t result = ioctl(fd, BINDER_VERSION, &vers);
#else
  status_t result = -1;
  errno = EPERM;
#endif
  if (result == -1) {
   LOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
   close(fd);
   fd = -1;
  }
  if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
   LOGE("Binder driver protocol does not match user space protocol!");
   close(fd);
   fd = -1;
  }
#if defined(HAVE_ANDROID_OS)
  size_t maxThreads = 15;
  result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
  if (result == -1) {
   LOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
  }
#endif 

 } else {
  LOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));
 }
 return fd;
}

这个函数的作用主要是通过open文件操作函数来打开/dev/binder设备文件,然后再调用ioctl文件控制函数来分别执行BINDER_VERSION和BINDER_SET_MAX_THREADS两个命令来和Binder驱动程序进行交互,前者用于获得当前Binder驱动程序的版本号,后者用于通知Binder驱动程序,MediaPlayerService最多可同时启动15个线程来处理Client端的请求。

open在Binder驱动程序中的具体实现,请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,这里不再重复描述。打开/dev/binder设备文件后,Binder驱动程序就为MediaPlayerService进程创建了一个struct binder_proc结构体实例来维护MediaPlayerService进程上下文相关信息。

我们来看一下ioctl文件操作函数执行BINDER_VERSION命令的过程:

status_t result = ioctl(fd, BINDER_VERSION, &vers);

这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_VERSION相关的部分逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
 int ret;
 struct binder_proc *proc = filp->private_data;
 struct binder_thread *thread;
 unsigned int size = _IOC_SIZE(cmd);
 void __user *ubuf = (void __user *)arg; 

 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 

 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
 if (ret)
  return ret; 

 mutex_lock(&binder_lock);
 thread = binder_get_thread(proc);
 if (thread == NULL) {
  ret = -ENOMEM;
  goto err;
 } 

 switch (cmd) {
 ......
 case BINDER_VERSION:
  if (size != sizeof(struct binder_version)) {
   ret = -EINVAL;
   goto err;
  }
  if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &((struct binder_version *)ubuf)->protocol_version)) {
   ret = -EINVAL;
   goto err;
  }
  break;
 ......
 }
 ret = 0;
err:
  ......
 return ret;
}

很简单,只是将BINDER_CURRENT_PROTOCOL_VERSION写入到传入的参数arg指向的用户缓冲区中去就返回了。BINDER_CURRENT_PROTOCOL_VERSION是一个宏,定义在kernel/common/drivers/staging/android/binder.h文件中:

/* This is the current protocol version. */ 
             #define BINDER_CURRENT_PROTOCOL_VERSION 7

这里为什么要把ubuf转换成struct binder_version之后,再通过其protocol_version成员变量再来写入呢,转了一圈,最终内容还是写入到ubuf中。我们看一下struct binder_version的定义就会明白,同样是在kernel/common/drivers/staging/android/binder.h文件中:

/* Use with BINDER_VERSION, driver fills in fields. */
struct binder_version {
 /* driver protocol version -- increment with incompatible change */
 signed long protocol_version;
}; 

从注释中可以看出来,这里是考虑到兼容性,因为以后很有可能不是用signed long来表示版本号。

这里有一个重要的地方要注意的是,由于这里是打开设备文件/dev/binder之后,第一次进入到binder_ioctl函数,因此,这里调用binder_get_thread的时候,就会为当前线程创建一个struct binder_thread结构体变量来维护线程上下文信息,具体可以参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。

接着我们再来看一下ioctl文件操作函数执行BINDER_SET_MAX_THREADS命令的过程:

result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);

这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_SET_MAX_THREADS相关的部分逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
 int ret;
 struct binder_proc *proc = filp->private_data;
 struct binder_thread *thread;
 unsigned int size = _IOC_SIZE(cmd);
 void __user *ubuf = (void __user *)arg; 

 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 

 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
 if (ret)
  return ret; 

 mutex_lock(&binder_lock);
 thread = binder_get_thread(proc);
 if (thread == NULL) {
  ret = -ENOMEM;
  goto err;
 } 

 switch (cmd) {
 ......
 case BINDER_SET_MAX_THREADS:
  if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) {
   ret = -EINVAL;
   goto err;
  }
  break;
 ......
 }
 ret = 0;
err:
 ......
 return ret;
}

这里实现也是非常简单,只是简单地把用户传进来的参数保存在proc->max_threads中就完毕了。注意,这里再调用binder_get_thread函数的时候,就可以在proc->threads中找到当前线程对应的struct binder_thread结构了,因为前面已经创建好并保存在proc->threads红黑树中。

回到ProcessState的构造函数中,这里还通过mmap函数来把设备文件/dev/binder映射到内存中,这个函数在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文也已经有详细介绍,这里不再重复描述。宏BINDER_VM_SIZE就定义在ProcessState.cpp文件中:

#define BINDER_VM_SIZE ((1*1024*1024) - (4096 *2))

mmap函数调用完成之后,Binder驱动程序就为当前进程预留了BINDER_VM_SIZE大小的内存空间了。

这样,ProcessState全局唯一变量gProcess就创建完毕了,回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,下一步是调用defaultServiceManager函数来获得Service Manager的远程接口,这个已经在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路有详细描述,读者可以回过头去参考一下。

再接下来,就进入到MediaPlayerService::instantiate函数把MediaPlayerService添加到Service Manger中去了。这个函数定义在frameworks/base/media/libmediaplayerservice/MediaPlayerService.cpp文件中:

void MediaPlayerService::instantiate() {
 defaultServiceManager()->addService(
   String16("media.player"), new MediaPlayerService());
}

我们重点看一下IServiceManger::addService的过程,这有助于我们加深对Binder机制的理解。

在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中说到,defaultServiceManager返回的实际是一个BpServiceManger类实例,因此,我们看一下BpServiceManger::addService的实现,这个函数实现在frameworks/base/libs/binder/IServiceManager.cpp文件中:

class BpServiceManager : public BpInterface<IServiceManager>
{
public:
 BpServiceManager(const sp<IBinder>& impl)
  : BpInterface<IServiceManager>(impl)
 {
 } 

 ...... 

 virtual status_t addService(const String16& name, const sp<IBinder>& service)
 {
  Parcel data, reply;
  data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
  data.writeString16(name);
  data.writeStrongBinder(service);
  status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
  return err == NO_ERROR ? reply.readExceptionCode()
 } 

 ...... 

};

这里的Parcel类是用来于序列化进程间通信数据用的。
         先来看这一句的调用:

data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());

IServiceManager::getInterfaceDescriptor()返回来的是一个字符串,即"android.os.IServiceManager",具体可以参考IServiceManger的实现。我们看一下Parcel::writeInterfaceToken的实现,位于frameworks/base/libs/binder/Parcel.cpp文件中:

// Write RPC headers. (previously just the interface token)
status_t Parcel::writeInterfaceToken(const String16& interface)
{
 writeInt32(IPCThreadState::self()->getStrictModePolicy() |
    STRICT_MODE_PENALTY_GATHER);
 // currently the interface identification token is just its name as a string
 return writeString16(interface);
}

它的作用是写入一个整数和一个字符串到Parcel中去。

再来看下面的调用:

data.writeString16(name);

这里又是写入一个字符串到Parcel中去,这里的name即是上面传进来的“media.player”字符串。
        往下看:

data.writeStrongBinder(service);

这里定入一个Binder对象到Parcel去。我们重点看一下这个函数的实现,因为它涉及到进程间传输Binder实体的问题,比较复杂,需要重点关注,同时,也是理解Binder机制的一个重点所在。注意,这里的service参数是一个MediaPlayerService对象。

status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
 return flatten_binder(ProcessState::self(), val, this);
} 

看到flatten_binder函数,是不是似曾相识的感觉?我们在前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路中,曾经提到在Binder驱动程序中,使用struct flat_binder_object来表示传输中的一个binder对象,它的定义如下所示:

/*
 * This is the flattened representation of a Binder object for transfer
 * between processes. The 'offsets' supplied as part of a binder transaction
 * contains offsets into the data where these structures occur. The Binder
 * driver takes care of re-writing the structure type and data as it moves
 * between processes.
 */
struct flat_binder_object {
 /* 8 bytes for large_flat_header. */
 unsigned long  type;
 unsigned long  flags; 

 /* 8 bytes of data. */
 union {
  void  *binder; /* local object */
  signed long handle;  /* remote object */
 }; 

 /* extra data associated with local object */
 void   *cookie;
};

各个成员变量的含义请参考资料Android Binder设计与实现。
        我们进入到flatten_binder函数看看:

status_t flatten_binder(const sp<ProcessState>& proc,
 const sp<IBinder>& binder, Parcel* out)
{
 flat_binder_object obj; 

 obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
 if (binder != NULL) {
  IBinder *local = binder->localBinder();
  if (!local) {
   BpBinder *proxy = binder->remoteBinder();
   if (proxy == NULL) {
    LOGE("null proxy");
   }
   const int32_t handle = proxy ? proxy->handle() : 0;
   obj.type = BINDER_TYPE_HANDLE;
   obj.handle = handle;
   obj.cookie = NULL;
  } else {
   obj.type = BINDER_TYPE_BINDER;
   obj.binder = local->getWeakRefs();
   obj.cookie = local;
  }
 } else {
  obj.type = BINDER_TYPE_BINDER;
  obj.binder = NULL;
  obj.cookie = NULL;
 } 

 return finish_flatten_binder(binder, obj, out);
}

首先是初始化flat_binder_object的flags域:

obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;

0x7f表示处理本Binder实体请求数据包的线程的最低优先级,FLAT_BINDER_FLAG_ACCEPTS_FDS表示这个Binder实体可以接受文件描述符,Binder实体在收到文件描述符时,就会在本进程中打开这个文件。

传进来的binder即为MediaPlayerService::instantiate函数中new出来的MediaPlayerService实例,因此,不为空。又由于MediaPlayerService继承自BBinder类,它是一个本地Binder实体,因此binder->localBinder返回一个BBinder指针,而且肯定不为空,于是执行下面语句:

obj.type = BINDER_TYPE_BINDER;
obj.binder = local->getWeakRefs();
obj.cookie = local;

设置了flat_binder_obj的其他成员变量,注意,指向这个Binder实体地址的指针local保存在flat_binder_obj的成员变量cookie中。

函数调用finish_flatten_binder来将这个flat_binder_obj写入到Parcel中去:

inline static status_t finish_flatten_binder(
 const sp<IBinder>& binder, const flat_binder_object& flat, Parcel* out)
{
 return out->writeObject(flat, false);
}

Parcel::writeObject的实现如下:

status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
{
 const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
 const bool enoughObjects = mObjectsSize < mObjectsCapacity;
 if (enoughData && enoughObjects) {
restart_write:
  *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val; 

  // Need to write meta-data?
  if (nullMetaData || val.binder != NULL) {
   mObjects[mObjectsSize] = mDataPos;
   acquire_object(ProcessState::self(), val, this);
   mObjectsSize++;
  } 

  // remember if it's a file descriptor
  if (val.type == BINDER_TYPE_FD) {
   mHasFds = mFdsKnown = true;
  } 

  return finishWrite(sizeof(flat_binder_object));
 } 

 if (!enoughData) {
  const status_t err = growData(sizeof(val));
  if (err != NO_ERROR) return err;
 }
 if (!enoughObjects) {
  size_t newSize = ((mObjectsSize+2)*3)/2;
  size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t));
  if (objects == NULL) return NO_MEMORY;
  mObjects = objects;
  mObjectsCapacity = newSize;
 } 

 goto restart_write;
}

这里除了把flat_binder_obj写到Parcel里面之内,还要记录这个flat_binder_obj在Parcel里面的偏移位置:

mObjects[mObjectsSize] = mDataPos;

这里因为,如果进程间传输的数据间带有Binder对象的时候,Binder驱动程序需要作进一步的处理,以维护各个Binder实体的一致性,下面我们将会看到Binder驱动程序是怎么处理这些Binder对象的。

再回到BpServiceManager::addService函数中,调用下面语句:

status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);

回到浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文中的类图中去看一下,这里的remote成员函数来自于BpRefBase类,它返回一个BpBinder指针。因此,我们继续进入到BpBinder::transact函数中去看看:

status_t BpBinder::transact(
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
 // Once a binder has died, it will never come back to life.
 if (mAlive) {
  status_t status = IPCThreadState::self()->transact(
   mHandle, code, data, reply, flags);
  if (status == DEAD_OBJECT) mAlive = 0;
  return status;
 } 

 return DEAD_OBJECT;
}

这里又调用了IPCThreadState::transact进执行实际的操作。注意,这里的mHandle为0,code为ADD_SERVICE_TRANSACTION。ADD_SERVICE_TRANSACTION是上面以参数形式传进来的,那mHandle为什么是0呢?因为这里表示的是Service Manager远程接口,它的句柄值一定是0,具体请参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。

再进入到IPCThreadState::transact函数,看看做了些什么事情:

status_t IPCThreadState::transact(int32_t handle,
         uint32_t code, const Parcel& data,
         Parcel* reply, uint32_t flags)
{
 status_t err = data.errorCheck(); 

 flags |= TF_ACCEPT_FDS; 

 IF_LOG_TRANSACTIONS() {
  TextOutput::Bundle _b(alog);
  alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
   << handle << " / code " << TypeCode(code) << ": "
   << indent << data << dedent << endl;
 } 

 if (err == NO_ERROR) {
  LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
   (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
  err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
 } 

 if (err != NO_ERROR) {
  if (reply) reply->setError(err);
  return (mLastError = err);
 } 

 if ((flags & TF_ONE_WAY) == 0) {
  #if 0
  if (code == 4) { // relayout
   LOGI(">>>>>> CALLING transaction 4");
  } else {
   LOGI(">>>>>> CALLING transaction %d", code);
  }
  #endif
  if (reply) {
   err = waitForResponse(reply);
  } else {
   Parcel fakeReply;
   err = waitForResponse(&fakeReply);
  }
  #if 0
  if (code == 4) { // relayout
   LOGI("<<<<<< RETURNING transaction 4");
  } else {
   LOGI("<<<<<< RETURNING transaction %d", code);
  }
  #endif 

  IF_LOG_TRANSACTIONS() {
   TextOutput::Bundle _b(alog);
   alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
    << handle << ": ";
   if (reply) alog << indent << *reply << dedent << endl;
   else alog << "(none requested)" << endl;
  }
 } else {
  err = waitForResponse(NULL, NULL);
 } 

 return err;
}

IPCThreadState::transact函数的参数flags是一个默认值为0的参数,上面没有传相应的实参进来,因此,这里就为0。

函数首先调用writeTransactionData函数准备好一个struct binder_transaction_data结构体变量,这个是等一下要传输给Binder驱动程序的。struct binder_transaction_data的定义我们在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文中有详细描述,读者不妨回过去读一下。这里为了方便描述,将struct binder_transaction_data的定义再次列出来:

struct binder_transaction_data {
 /* The first two are only used for bcTRANSACTION and brTRANSACTION,
  * identifying the target and contents of the transaction.
  */
 union {
  size_t handle; /* target descriptor of command transaction */
  void *ptr; /* target descriptor of return transaction */
 } target;
 void  *cookie; /* target object cookie */
 unsigned int code;  /* transaction command */ 

 /* General information about the transaction. */
 unsigned int flags;
 pid_t  sender_pid;
 uid_t  sender_euid;
 size_t  data_size; /* number of bytes of data */
 size_t  offsets_size; /* number of bytes of offsets */ 

 /* If this transaction is inline, the data immediately
  * follows here; otherwise, it ends with a pointer to
  * the data buffer.
  */
 union {
  struct {
   /* transaction data */
   const void *buffer;
   /* offsets from buffer to flat_binder_object structs */
   const void *offsets;
  } ptr;
  uint8_t buf[8];
 } data;
};
  

writeTransactionData函数的实现如下:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
 int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
 binder_transaction_data tr; 

 tr.target.handle = handle;
 tr.code = code;
 tr.flags = binderFlags; 

 const status_t err = data.errorCheck();
 if (err == NO_ERROR) {
  tr.data_size = data.ipcDataSize();
  tr.data.ptr.buffer = data.ipcData();
  tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
  tr.data.ptr.offsets = data.ipcObjects();
 } else if (statusBuffer) {
  tr.flags |= TF_STATUS_CODE;
  *statusBuffer = err;
  tr.data_size = sizeof(status_t);
  tr.data.ptr.buffer = statusBuffer;
  tr.offsets_size = 0;
  tr.data.ptr.offsets = NULL;
 } else {
  return (mLastError = err);
 } 

 mOut.writeInt32(cmd);
 mOut.write(&tr, sizeof(tr)); 

 return NO_ERROR;
}

注意,这里的cmd为BC_TRANSACTION。 这个函数很简单,在这个场景下,就是执行下面语句来初始化本地变量tr:

tr.data_size = data.ipcDataSize();
tr.data.ptr.buffer = data.ipcData();
tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
tr.data.ptr.offsets = data.ipcObjects(); 

回忆一下上面的内容,写入到tr.data.ptr.buffer的内容相当于下面的内容:

writeInt32(IPCThreadState::self()->getStrictModePolicy() |
    STRICT_MODE_PENALTY_GATHER);
writeString16("android.os.IServiceManager");
writeString16("media.player");
writeStrongBinder(new MediaPlayerService()); 

其中包含了一个Binder实体MediaPlayerService,因此需要设置tr.offsets_size就为1,tr.data.ptr.offsets就指向了这个MediaPlayerService的地址在tr.data.ptr.buffer中的偏移量。最后,将tr的内容保存在IPCThreadState的成员变量mOut中。

回到IPCThreadState::transact函数中,接下去看,(flags & TF_ONE_WAY) == 0为true,并且reply不为空,所以最终进入到waitForResponse(reply)这条路径来。我们看一下waitForResponse函数的实现:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
 int32_t cmd;
 int32_t err; 

 while (1) {
  if ((err=talkWithDriver()) < NO_ERROR) break;
  err = mIn.errorCheck();
  if (err < NO_ERROR) break;
  if (mIn.dataAvail() == 0) continue; 

  cmd = mIn.readInt32(); 

  IF_LOG_COMMANDS() {
   alog << "Processing waitForResponse Command: "
    << getReturnString(cmd) << endl;
  } 

  switch (cmd) {
  case BR_TRANSACTION_COMPLETE:
   if (!reply && !acquireResult) goto finish;
   break; 

  case BR_DEAD_REPLY:
   err = DEAD_OBJECT;
   goto finish; 

  case BR_FAILED_REPLY:
   err = FAILED_TRANSACTION;
   goto finish; 

  case BR_ACQUIRE_RESULT:
   {
    LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
    const int32_t result = mIn.readInt32();
    if (!acquireResult) continue;
    *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
   }
   goto finish; 

  case BR_REPLY:
   {
    binder_transaction_data tr;
    err = mIn.read(&tr, sizeof(tr));
    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
    if (err != NO_ERROR) goto finish; 

    if (reply) {
     if ((tr.flags & TF_STATUS_CODE) == 0) {
      reply->ipcSetDataReference(
       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
       tr.data_size,
       reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
       tr.offsets_size/sizeof(size_t),
       freeBuffer, this);
     } else {
      err = *static_cast<const status_t*>(tr.data.ptr.buffer);
      freeBuffer(NULL,
       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
       tr.data_size,
       reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
       tr.offsets_size/sizeof(size_t), this);
     }
    } else {
     freeBuffer(NULL,
      reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
      tr.data_size,
      reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
      tr.offsets_size/sizeof(size_t), this);
     continue;
    }
   }
   goto finish; 

  default:
   err = executeCommand(cmd);
   if (err != NO_ERROR) goto finish;
   break;
  }
 } 

finish:
 if (err != NO_ERROR) {
  if (acquireResult) *acquireResult = err;
  if (reply) reply->setError(err);
  mLastError = err;
 } 

 return err;
}

这个函数虽然很长,但是主要调用了talkWithDriver函数来与Binder驱动程序进行交互:

status_t IPCThreadState::talkWithDriver(bool doReceive)
{
 LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened"); 

 binder_write_read bwr; 

 // Is the read buffer empty?
 const bool needRead = mIn.dataPosition() >= mIn.dataSize(); 

 // We don't want to write anything if we are still reading
 // from data left in the input buffer and the caller
 // has requested to read the next data.
 const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; 

 bwr.write_size = outAvail;
 bwr.write_buffer = (long unsigned int)mOut.data(); 

 // This is what we'll read.
 if (doReceive && needRead) {
  bwr.read_size = mIn.dataCapacity();
  bwr.read_buffer = (long unsigned int)mIn.data();
 } else {
  bwr.read_size = 0;
 } 

 IF_LOG_COMMANDS() {
  TextOutput::Bundle _b(alog);
  if (outAvail != 0) {
   alog << "Sending commands to driver: " << indent;
   const void* cmds = (const void*)bwr.write_buffer;
   const void* end = ((const uint8_t*)cmds)+bwr.write_size;
   alog << HexDump(cmds, bwr.write_size) << endl;
   while (cmds < end) cmds = printCommand(alog, cmds);
   alog << dedent;
  }
  alog << "Size of receive buffer: " << bwr.read_size
   << ", needRead: " << needRead << ", doReceive: " << doReceive << endl;
 } 

 // Return immediately if there is nothing to do.
 if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; 

 bwr.write_consumed = 0;
 bwr.read_consumed = 0;
 status_t err;
 do {
  IF_LOG_COMMANDS() {
   alog << "About to read/write, write size = " << mOut.dataSize() << endl;
  }
#if defined(HAVE_ANDROID_OS)
  if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
   err = NO_ERROR;
  else
   err = -errno;
#else
  err = INVALID_OPERATION;
#endif
  IF_LOG_COMMANDS() {
   alog << "Finished read/write, write size = " << mOut.dataSize() << endl;
  }
 } while (err == -EINTR); 

 IF_LOG_COMMANDS() {
  alog << "Our err: " << (void*)err << ", write consumed: "
   << bwr.write_consumed << " (of " << mOut.dataSize()
   << "), read consumed: " << bwr.read_consumed << endl;
 } 

 if (err >= NO_ERROR) {
  if (bwr.write_consumed > 0) {
   if (bwr.write_consumed < (ssize_t)mOut.dataSize())
    mOut.remove(0, bwr.write_consumed);
   else
    mOut.setDataSize(0);
  }
  if (bwr.read_consumed > 0) {
   mIn.setDataSize(bwr.read_consumed);
   mIn.setDataPosition(0);
  }
  IF_LOG_COMMANDS() {
   TextOutput::Bundle _b(alog);
   alog << "Remaining data size: " << mOut.dataSize() << endl;
   alog << "Received commands from driver: " << indent;
   const void* cmds = mIn.data();
   const void* end = mIn.data() + mIn.dataSize();
   alog << HexDump(cmds, mIn.dataSize()) << endl;
   while (cmds < end) cmds = printReturnCommand(alog, cmds);
   alog << dedent;
  }
  return NO_ERROR;
 } 

 return err;
}

这里doReceive和needRead均为1,有兴趣的读者可以自已分析一下。因此,这里告诉Binder驱动程序,先执行write操作,再执行read操作,下面我们将会看到。

最后,通过ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)进行到Binder驱动程序的binder_ioctl函数,我们只关注cmd为BINDER_WRITE_READ的逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
 int ret;
 struct binder_proc *proc = filp->private_data;
 struct binder_thread *thread;
 unsigned int size = _IOC_SIZE(cmd);
 void __user *ubuf = (void __user *)arg; 

 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 

 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
 if (ret)
  return ret; 

 mutex_lock(&binder_lock);
 thread = binder_get_thread(proc);
 if (thread == NULL) {
  ret = -ENOMEM;
  goto err;
 } 

 switch (cmd) {
 case BINDER_WRITE_READ: {
  struct binder_write_read bwr;
  if (size != sizeof(struct binder_write_read)) {
   ret = -EINVAL;
   goto err;
  }
  if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
   ret = -EFAULT;
   goto err;
  }
  if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)
   printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n",
   proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer);
  if (bwr.write_size > 0) {
   ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
   if (ret < 0) {
    bwr.read_consumed = 0;
    if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
     ret = -EFAULT;
    goto err;
   }
  }
  if (bwr.read_size > 0) {
   ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
   if (!list_empty(&proc->todo))
    wake_up_interruptible(&proc->wait);
   if (ret < 0) {
    if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
     ret = -EFAULT;
    goto err;
   }
  }
  if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)
   printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n",
   proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size);
  if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
   ret = -EFAULT;
   goto err;
  }
  break;
 }
 ......
 }
 ret = 0;
err:
 ......
 return ret;
}

函数首先是将用户传进来的参数拷贝到本地变量struct binder_write_read bwr中去。这里bwr.write_size > 0为true,因此,进入到binder_thread_write函数中,我们只关注BC_TRANSACTION部分的逻辑:

binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
     void __user *buffer, int size, signed long *consumed)
{
 uint32_t cmd;
 void __user *ptr = buffer + *consumed;
 void __user *end = buffer + size; 

 while (ptr < end && thread->return_error == BR_OK) {
  if (get_user(cmd, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
   binder_stats.bc[_IOC_NR(cmd)]++;
   proc->stats.bc[_IOC_NR(cmd)]++;
   thread->stats.bc[_IOC_NR(cmd)]++;
  }
  switch (cmd) {
   .....
  case BC_TRANSACTION:
  case BC_REPLY: {
   struct binder_transaction_data tr; 

   if (copy_from_user(&tr, ptr, sizeof(tr)))
    return -EFAULT;
   ptr += sizeof(tr);
   binder_transaction(proc, thread, &tr, cmd == BC_REPLY);
   break;
  }
  ......
  }
  *consumed = ptr - buffer;
 }
 return 0;
}

首先将用户传进来的transact参数拷贝在本地变量struct binder_transaction_data tr中去,接着调用binder_transaction函数进一步处理,这里我们忽略掉无关代码:

static void
binder_transaction(struct binder_proc *proc, struct binder_thread *thread,
struct binder_transaction_data *tr, int reply)
{
 struct binder_transaction *t;
 struct binder_work *tcomplete;
 size_t *offp, *off_end;
 struct binder_proc *target_proc;
 struct binder_thread *target_thread = NULL;
 struct binder_node *target_node = NULL;
 struct list_head *target_list;
 wait_queue_head_t *target_wait;
 struct binder_transaction *in_reply_to = NULL;
 struct binder_transaction_log_entry *e;
 uint32_t return_error; 

  ...... 

 if (reply) {
   ......
 } else {
  if (tr->target.handle) {
   ......
  } else {
   target_node = binder_context_mgr_node;
   if (target_node == NULL) {
    return_error = BR_DEAD_REPLY;
    goto err_no_context_mgr_node;
   }
  }
  ......
  target_proc = target_node->proc;
  if (target_proc == NULL) {
   return_error = BR_DEAD_REPLY;
   goto err_dead_binder;
  }
  ......
 }
 if (target_thread) {
  ......
 } else {
  target_list = &target_proc->todo;
  target_wait = &target_proc->wait;
 } 

 ...... 

 /* TODO: reuse incoming transaction for reply */
 t = kzalloc(sizeof(*t), GFP_KERNEL);
 if (t == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_alloc_t_failed;
 }
 ...... 

 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
 if (tcomplete == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_alloc_tcomplete_failed;
 } 

 ...... 

 if (!reply && !(tr->flags & TF_ONE_WAY))
  t->from = thread;
 else
  t->from = NULL;
 t->sender_euid = proc->tsk->cred->euid;
 t->to_proc = target_proc;
 t->to_thread = target_thread;
 t->code = tr->code;
 t->flags = tr->flags;
 t->priority = task_nice(current);
 t->buffer = binder_alloc_buf(target_proc, tr->data_size,
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
 if (t->buffer == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_binder_alloc_buf_failed;
 }
 t->buffer->allow_user_free = 0;
 t->buffer->debug_id = t->debug_id;
 t->buffer->transaction = t;
 t->buffer->target_node = target_node;
 if (target_node)
  binder_inc_node(target_node, 1, 0, NULL); 

 offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 

 if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {
  ......
  return_error = BR_FAILED_REPLY;
  goto err_copy_data_failed;
 }
 if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {
  ......
  return_error = BR_FAILED_REPLY;
  goto err_copy_data_failed;
 }
 ...... 

 off_end = (void *)offp + tr->offsets_size;
 for (; offp < off_end; offp++) {
  struct flat_binder_object *fp;
  ......
  fp = (struct flat_binder_object *)(t->buffer->data + *offp);
  switch (fp->type) {
  case BINDER_TYPE_BINDER:
  case BINDER_TYPE_WEAK_BINDER: {
   struct binder_ref *ref;
   struct binder_node *node = binder_get_node(proc, fp->binder);
   if (node == NULL) {
    node = binder_new_node(proc, fp->binder, fp->cookie);
    if (node == NULL) {
     return_error = BR_FAILED_REPLY;
     goto err_binder_new_node_failed;
    }
    node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;
    node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);
   }
   if (fp->cookie != node->cookie) {
    ......
    goto err_binder_get_ref_for_node_failed;
   }
   ref = binder_get_ref_for_node(target_proc, node);
   if (ref == NULL) {
    return_error = BR_FAILED_REPLY;
    goto err_binder_get_ref_for_node_failed;
   }
   if (fp->type == BINDER_TYPE_BINDER)
    fp->type = BINDER_TYPE_HANDLE;
   else
    fp->type = BINDER_TYPE_WEAK_HANDLE;
   fp->handle = ref->desc;
   binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo);
   ...... 

  } break;
  ......
  }
 } 

 if (reply) {
  ......
 } else if (!(t->flags & TF_ONE_WAY)) {
  BUG_ON(t->buffer->async_transaction != 0);
  t->need_reply = 1;
  t->from_parent = thread->transaction_stack;
  thread->transaction_stack = t;
 } else {
  ......
 }
 t->work.type = BINDER_WORK_TRANSACTION;
 list_add_tail(&t->work.entry, target_list);
 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
 list_add_tail(&tcomplete->entry, &thread->todo);
 if (target_wait)
  wake_up_interruptible(target_wait);
 return;
 ......
}

注意,这里传进来的参数reply为0,tr->target.handle也为0。因此,target_proc、target_thread、target_node、target_list和target_wait的值分别为:

target_node = binder_context_mgr_node;
target_proc = target_node->proc;
target_list = &target_proc->todo;
target_wait = &target_proc->wait; 

接着,分配了一个待处理事务t和一个待完成工作项tcomplete,并执行初始化工作:

/* TODO: reuse incoming transaction for reply */
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (t == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_alloc_t_failed;
}
...... 

tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
if (tcomplete == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_alloc_tcomplete_failed;
} 

...... 

if (!reply && !(tr->flags & TF_ONE_WAY))
 t->from = thread;
else
 t->from = NULL;
t->sender_euid = proc->tsk->cred->euid;
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
t->buffer = binder_alloc_buf(target_proc, tr->data_size,
 tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
if (t->buffer == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_binder_alloc_buf_failed;
}
t->buffer->allow_user_free = 0;
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
if (target_node)
 binder_inc_node(target_node, 1, 0, NULL); 

offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 

if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {
 ......
 return_error = BR_FAILED_REPLY;
 goto err_copy_data_failed;
}
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {
 ......
 return_error = BR_FAILED_REPLY;
 goto err_copy_data_failed;
}

注意,这里的事务t是要交给target_proc处理的,在这个场景之下,就是Service Manager了。因此,下面的语句:

t->buffer = binder_alloc_buf(target_proc, tr->data_size,
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));

就是在Service Manager的进程空间中分配一块内存来保存用户传进入的参数了:

if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {
 ......
 return_error = BR_FAILED_REPLY;
 goto err_copy_data_failed;
}
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {
 ......
 return_error = BR_FAILED_REPLY;
 goto err_copy_data_failed;
}

由于现在target_node要被使用了,增加它的引用计数:

if (target_node)
  binder_inc_node(target_node, 1, 0, NULL);

接下去的for循环,就是用来处理传输数据中的Binder对象了。在我们的场景中,有一个类型为BINDER_TYPE_BINDER的Binder实体MediaPlayerService:

 switch (fp->type) {
 case BINDER_TYPE_BINDER:
 case BINDER_TYPE_WEAK_BINDER: {
struct binder_ref *ref;
struct binder_node *node = binder_get_node(proc, fp->binder);
if (node == NULL) {
 node = binder_new_node(proc, fp->binder, fp->cookie);
 if (node == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_binder_new_node_failed;
 }
 node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK;
 node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS);
}
if (fp->cookie != node->cookie) {
 ......
 goto err_binder_get_ref_for_node_failed;
}
ref = binder_get_ref_for_node(target_proc, node);
if (ref == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_binder_get_ref_for_node_failed;
}
if (fp->type == BINDER_TYPE_BINDER)
 fp->type = BINDER_TYPE_HANDLE;
else
 fp->type = BINDER_TYPE_WEAK_HANDLE;
fp->handle = ref->desc;
binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo);
...... 

} break;

由于是第一次在Binder驱动程序中传输这个MediaPlayerService,调用binder_get_node函数查询这个Binder实体时,会返回空,于是binder_new_node在proc中新建一个,下次就可以直接使用了。

现在,由于要把这个Binder实体MediaPlayerService交给target_proc,也就是Service Manager来管理,也就是说Service Manager要引用这个MediaPlayerService了,于是通过binder_get_ref_for_node为MediaPlayerService创建一个引用,并且通过binder_inc_ref来增加这个引用计数,防止这个引用还在使用过程当中就被销毁。注意,到了这里的时候,t->buffer中的flat_binder_obj的type已经改为BINDER_TYPE_HANDLE,handle已经改为ref->desc,跟原来不一样了,因为这个flat_binder_obj是最终是要传给Service Manager的,而Service Manager只能够通过句柄值来引用这个Binder实体。

最后,把待处理事务加入到target_list列表中去:

list_add_tail(&t->work.entry, target_list);

并且把待完成工作项加入到本线程的todo等待执行列表中去:

list_add_tail(&tcomplete->entry, &thread->todo);

现在目标进程有事情可做了,于是唤醒它:

if (target_wait)  
                          wake_up_interruptible(target_wait);

这里就是要唤醒Service Manager进程了。回忆一下前面这篇文章,此时, Service Manager正在binder_t浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路hread_read函数中调用wait_event_interruptible进入休眠状态。

这里我们先忽略一下Service Manager被唤醒之后的场景,继续MedaPlayerService的启动过程,然后再回来。

回到binder_ioctl函数,bwr.read_size > 0为true,于是进入binder_thread_read函数:

static int
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
     void __user *buffer, int size, signed long *consumed, int non_block)
{
 void __user *ptr = buffer + *consumed;
 void __user *end = buffer + size; 

 int ret = 0;
 int wait_for_proc_work; 

 if (*consumed == 0) {
  if (put_user(BR_NOOP, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
 } 

retry:
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 

 ....... 

 if (wait_for_proc_work) {
  .......
 } else {
  if (non_block) {
   if (!binder_has_thread_work(thread))
    ret = -EAGAIN;
  } else
   ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));
 } 

 ...... 

 while (1) {
  uint32_t cmd;
  struct binder_transaction_data tr;
  struct binder_work *w;
  struct binder_transaction *t = NULL; 

  if (!list_empty(&thread->todo))
   w = list_first_entry(&thread->todo, struct binder_work, entry);
  else if (!list_empty(&proc->todo) && wait_for_proc_work)
   w = list_first_entry(&proc->todo, struct binder_work, entry);
  else {
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */
    goto retry;
   break;
  } 

  if (end - ptr < sizeof(tr) + 4)
   break; 

  switch (w->type) {
  ......
  case BINDER_WORK_TRANSACTION_COMPLETE: {
   cmd = BR_TRANSACTION_COMPLETE;
   if (put_user(cmd, (uint32_t __user *)ptr))
    return -EFAULT;
   ptr += sizeof(uint32_t); 

   binder_stat_br(proc, thread, cmd);
   if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE)
    printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n",
    proc->pid, thread->pid); 

   list_del(&w->entry);
   kfree(w);
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++;
            } break;
  ......
  } 

  if (!t)
   continue; 

  ......
 } 

done:
 ......
 return 0;
}

这里,thread->transaction_stack和thread->todo均不为空,于是wait_for_proc_work为false,由于binder_has_thread_work的时候,返回true,这里因为thread->todo不为空,因此,线程虽然调用了wait_event_interruptible,但是不会睡眠,于是继续往下执行。

由于thread->todo不为空,执行下列语句:

if (!list_empty(&thread->todo))
  w = list_first_entry(&thread->todo, struct binder_work, entry);

w->type为BINDER_WORK_TRANSACTION_COMPLETE,这是在上面的binder_transaction函数设置的,于是执行:

 switch (w->type) {
 ......
 case BINDER_WORK_TRANSACTION_COMPLETE: {
cmd = BR_TRANSACTION_COMPLETE;
if (put_user(cmd, (uint32_t __user *)ptr))
 return -EFAULT;
ptr += sizeof(uint32_t); 

  ......
list_del(&w->entry);
kfree(w); 

} break;
......
 }

这里就将w从thread->todo删除了。由于这里t为空,重新执行while循环,这时由于已经没有事情可做了,最后就返回到binder_ioctl函数中。注间,这里一共往用户传进来的缓冲区buffer写入了两个整数,分别是BR_NOOP和BR_TRANSACTION_COMPLETE。

binder_ioctl函数返回到用户空间之前,把数据消耗情况拷贝回用户空间中:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
 ret = -EFAULT;
 goto err;
}

最后返回到IPCThreadState::talkWithDriver函数中,执行下面语句:

 if (err >= NO_ERROR) {
  if (bwr.write_consumed > 0) {
   if (bwr.write_consumed < (ssize_t)mOut.dataSize())
    mOut.remove(0, bwr.write_consumed);
   else
    mOut.setDataSize(0);
  }
  if (bwr.read_consumed > 0) {
<pre code_snippet_id="134056" snippet_file_name="blog_20131230_54_6706870" name="code" class="cpp">   mIn.setDataSize(bwr.read_consumed);
   mIn.setDataPosition(0);</pre>  }  ......  return NO_ERROR; }

首先是把mOut的数据清空:
                          mOut.setDataSize(0);

然后设置已经读取的内容的大小:

mIn.setDataSize(bwr.read_consumed);  
                          mIn.setDataPosition(0);

然后返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,先是从mIn读出一个整数,这个便是BR_NOOP了,这是一个空操作,什么也不做。然后继续进入IPCThreadState::talkWithDriver函数中。

这时候,下面语句执行后:

const bool needRead = mIn.dataPosition() >= mIn.dataSize();

needRead为false,因为在mIn中,尚有一个整数BR_TRANSACTION_COMPLETE未读出。

这时候,下面语句执行后:

const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;

outAvail等于0。因此,最后bwr.write_size和bwr.read_size均为0,IPCThreadState::talkWithDriver函数什么也不做,直接返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,又继续从mIn读出一个整数,这个便是BR_TRANSACTION_COMPLETE:

switch (cmd) {
case BR_TRANSACTION_COMPLETE:
  if (!reply && !acquireResult) goto finish;
  break;
......
}

reply不为NULL,因此,IPCThreadState::waitForResponse的循环没有结束,继续执行,又进入到IPCThreadState::talkWithDrive中。

这次,needRead就为true了,而outAvail仍为0,所以bwr.read_size不为0,bwr.write_size为0。于是通过:

ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)

进入到Binder驱动程序中的binder_ioctl函数中。由于bwr.write_size为0,bwr.read_size不为0,这次直接就进入到binder_thread_read函数中。这时候,thread->transaction_stack不等于0,但是thread->todo为空,于是线程就通过:
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
wait_event_interruptible(thread->wait, binder_has_thread_work(thread));

进入睡眠状态,等待Service Manager来唤醒了。

现在,我们可以回到Service Manager被唤醒的过程了。我们接着前面浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路这篇文章的最后,继续描述。此时, Service Manager正在binder_thread_read函数中调用wait_event_interruptible_exclusive进入休眠状态。上面被MediaPlayerService启动后进程唤醒后,继续执行binder_thread_read函数:

static int
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
     void __user *buffer, int size, signed long *consumed, int non_block)
{
 void __user *ptr = buffer + *consumed;
 void __user *end = buffer + size; 

 int ret = 0;
 int wait_for_proc_work; 

 if (*consumed == 0) {
  if (put_user(BR_NOOP, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
 } 

retry:
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 

 ...... 

 if (wait_for_proc_work) {
  ......
  if (non_block) {
   if (!binder_has_proc_work(proc, thread))
    ret = -EAGAIN;
  } else
   ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));
 } else {
  ......
 } 

 ...... 

 while (1) {
  uint32_t cmd;
  struct binder_transaction_data tr;
  struct binder_work *w;
  struct binder_transaction *t = NULL; 

  if (!list_empty(&thread->todo))
   w = list_first_entry(&thread->todo, struct binder_work, entry);
  else if (!list_empty(&proc->todo) && wait_for_proc_work)
   w = list_first_entry(&proc->todo, struct binder_work, entry);
  else {
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */
    goto retry;
   break;
  } 

  if (end - ptr < sizeof(tr) + 4)
   break; 

  switch (w->type) {
  case BINDER_WORK_TRANSACTION: {
   t = container_of(w, struct binder_transaction, work);
          } break;
  ......
  } 

  if (!t)
   continue; 

  BUG_ON(t->buffer == NULL);
  if (t->buffer->target_node) {
   struct binder_node *target_node = t->buffer->target_node;
   tr.target.ptr = target_node->ptr;
   tr.cookie = target_node->cookie;
   ......
   cmd = BR_TRANSACTION;
  } else {
   ......
  }
  tr.code = t->code;
  tr.flags = t->flags;
  tr.sender_euid = t->sender_euid; 

  if (t->from) {
   struct task_struct *sender = t->from->proc->tsk;
   tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);
  } else {
   tr.sender_pid = 0;
  } 

  tr.data_size = t->buffer->data_size;
  tr.offsets_size = t->buffer->offsets_size;
  tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;
  tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 

  if (put_user(cmd, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
  if (copy_to_user(ptr, &tr, sizeof(tr)))
   return -EFAULT;
  ptr += sizeof(tr); 

  ...... 

  list_del(&t->work.entry);
  t->buffer->allow_user_free = 1;
  if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
   t->to_parent = thread->transaction_stack;
   t->to_thread = thread;
   thread->transaction_stack = t;
  } else {
   t->buffer->transaction = NULL;
   kfree(t);
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;
  }
  break;
 } 

done: 

 ......
 return 0;
}

Service Manager被唤醒之后,就进入while循环开始处理事务了。这里wait_for_proc_work等于1,并且proc->todo不为空,所以从proc->todo列表中得到第一个工作项:

w = list_first_entry(&proc->todo, struct binder_work, entry);

从上面的描述中,我们知道,这个工作项的类型为BINDER_WORK_TRANSACTION,于是通过下面语句得到事务项:

t = container_of(w, struct binder_transaction, work);

接着就是把事务项t中的数据拷贝到本地局部变量struct binder_transaction_data tr中去了:

if (t->buffer->target_node) {
 struct binder_node *target_node = t->buffer->target_node;
 tr.target.ptr = target_node->ptr;
 tr.cookie = target_node->cookie;
 ......
 cmd = BR_TRANSACTION;
} else {
 ......
}
tr.code = t->code;
tr.flags = t->flags;
tr.sender_euid = t->sender_euid; 

if (t->from) {
 struct task_struct *sender = t->from->proc->tsk;
 tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);
} else {
 tr.sender_pid = 0;
} 

tr.data_size = t->buffer->data_size;
tr.offsets_size = t->buffer->offsets_size;
tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));

这里有一个非常重要的地方,是Binder进程间通信机制的精髓所在:

tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));

t->buffer->data所指向的地址是内核空间的,现在要把数据返回给Service Manager进程的用户空间,而Service Manager进程的用户空间是不能访问内核空间的数据的,所以这里要作一下处理。怎么处理呢?我们在学面向对象语言的时候,对象的拷贝有深拷贝和浅拷贝之分,深拷贝是把另外分配一块新内存,然后把原始对象的内容搬过去,浅拷贝是并没有为新对象分配一块新空间,而只是分配一个引用,而个引用指向原始对象。Binder机制用的是类似浅拷贝的方法,通过在用户空间分配一个虚拟地址,然后让这个用户空间虚拟地址与 t->buffer->data这个内核空间虚拟地址指向同一个物理地址,这样就可以实现浅拷贝了。怎么样用户空间和内核空间的虚拟地址同时指向同一个物理地址呢?请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,那里有详细描述。这里只要将t->buffer->data加上一个偏移值proc->user_buffer_offset就可以得到t->buffer->data对应的用户空间虚拟地址了。调整了tr.data.ptr.buffer的值之后,不要忘记也要一起调整tr.data.ptr.offsets的值。

接着就是把tr的内容拷贝到用户传进来的缓冲区去了,指针ptr指向这个用户缓冲区的地址:

if (put_user(cmd, (uint32_t __user *)ptr))
 return -EFAULT;
ptr += sizeof(uint32_t);
if (copy_to_user(ptr, &tr, sizeof(tr)))
 return -EFAULT;
ptr += sizeof(tr);

这里可以看出,这里只是对作tr.data.ptr.bufferr和tr.data.ptr.offsets的内容作了浅拷贝。

最后,由于已经处理了这个事务,要把它从todo列表中删除:

list_del(&t->work.entry);
t->buffer->allow_user_free = 1;
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
 t->to_parent = thread->transaction_stack;
 t->to_thread = thread;
 thread->transaction_stack = t;
} else {
 t->buffer->transaction = NULL;
 kfree(t);
 binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;
}

注意,这里的cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为true,表明这个事务虽然在驱动程序中已经处理完了,但是它仍然要等待Service Manager完成之后,给驱动程序一个确认,也就是需要等待回复,于是把当前事务t放在thread->transaction_stack队列的头部:

t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t;

如果cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为false,那就不需要等待回复了,直接把事务t删掉。

这个while最后通过一个break跳了出来,最后返回到binder_ioctl函数中:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
 int ret;
 struct binder_proc *proc = filp->private_data;
 struct binder_thread *thread;
 unsigned int size = _IOC_SIZE(cmd);
 void __user *ubuf = (void __user *)arg; 

 ...... 

 switch (cmd) {
 case BINDER_WRITE_READ: {
  struct binder_write_read bwr;
  if (size != sizeof(struct binder_write_read)) {
   ret = -EINVAL;
   goto err;
  }
  if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
   ret = -EFAULT;
   goto err;
  }
  ......
  if (bwr.read_size > 0) {
   ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
   if (!list_empty(&proc->todo))
    wake_up_interruptible(&proc->wait);
   if (ret < 0) {
    if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
     ret = -EFAULT;
    goto err;
   }
  }
  ......
  if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
   ret = -EFAULT;
   goto err;
  }
  break;
  }
 ......
 default:
  ret = -EINVAL;
  goto err;
 }
 ret = 0;
err:
 ......
 return ret;
}

从binder_thread_read返回来后,再看看proc->todo是否还有事务等待处理,如果是,就把睡眠在proc->wait队列的线程唤醒来处理。最后,把本地变量struct binder_write_read bwr的内容拷贝回到用户传进来的缓冲区中,就返回了。

这里就是返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数了:

void binder_loop(struct binder_state *bs, binder_handler func)
{
 int res;
 struct binder_write_read bwr;
 unsigned readbuf[32]; 

 bwr.write_size = 0;
 bwr.write_consumed = 0;
 bwr.write_buffer = 0; 

 readbuf[0] = BC_ENTER_LOOPER;
 binder_write(bs, readbuf, sizeof(unsigned)); 

 for (;;) {
  bwr.read_size = sizeof(readbuf);
  bwr.read_consumed = 0;
  bwr.read_buffer = (unsigned) readbuf; 

  res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); 

  if (res < 0) {
   LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
   break;
  } 

  res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);
  if (res == 0) {
   LOGE("binder_loop: unexpected reply?!\n");
   break;
  }
  if (res < 0) {
   LOGE("binder_loop: io error %d %s\n", res, strerror(errno));
   break;
  }
 }
}

返回来的数据都放在readbuf中,接着调用binder_parse进行解析:

int binder_parse(struct binder_state *bs, struct binder_io *bio,
     uint32_t *ptr, uint32_t size, binder_handler func)
{
 int r = 1;
 uint32_t *end = ptr + (size / 4); 

 while (ptr < end) {
  uint32_t cmd = *ptr++;
  ......
  case BR_TRANSACTION: {
   struct binder_txn *txn = (void *) ptr;
   if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) {
    LOGE("parse: txn too small!\n");
    return -1;
   }
   binder_dump_txn(txn);
   if (func) {
    unsigned rdata[256/4];
    struct binder_io msg;
    struct binder_io reply;
    int res; 

    bio_init(&reply, rdata, sizeof(rdata), 4);
    bio_init_from_txn(&msg, txn);
    res = func(bs, txn, &msg, &reply);
    binder_send_reply(bs, &reply, txn->data, res);
   }
   ptr += sizeof(*txn) / sizeof(uint32_t);
   break;
        }
  ......
  default:
   LOGE("parse: OOPS %d\n", cmd);
   return -1;
  }
 } 

 return r;
}

首先把从Binder驱动程序读出来的数据转换为一个struct binder_txn结构体,保存在txn本地变量中,struct binder_txn定义在frameworks/base/cmds/servicemanager/binder.h文件中:

struct binder_txn
{
 void *target;
 void *cookie;
 uint32_t code;
 uint32_t flags; 

 uint32_t sender_pid;
 uint32_t sender_euid; 

 uint32_t data_size;
 uint32_t offs_size;
 void *data;
 void *offs;
};

函数中还用到了另外一个数据结构struct binder_io,也是定义在frameworks/base/cmds/servicemanager/binder.h文件中:

struct binder_io
{
 char *data;   /* pointer to read/write from */
 uint32_t *offs;  /* array of offsets */
 uint32_t data_avail; /* bytes available in data buffer */
 uint32_t offs_avail; /* entries available in offsets array */ 

 char *data0;   /* start of data buffer */
 uint32_t *offs0;  /* start of offsets buffer */
 uint32_t flags;
 uint32_t unused;
};

接着往下看,函数调bio_init来初始化reply变量:

void bio_init(struct binder_io *bio, void *data,
    uint32_t maxdata, uint32_t maxoffs)
{
 uint32_t n = maxoffs * sizeof(uint32_t); 

 if (n > maxdata) {
  bio->flags = BIO_F_OVERFLOW;
  bio->data_avail = 0;
  bio->offs_avail = 0;
  return;
 } 

 bio->data = bio->data0 = data + n;
 bio->offs = bio->offs0 = data;
 bio->data_avail = maxdata - n;
 bio->offs_avail = maxoffs;
 bio->flags = 0;
}

接着又调用bio_init_from_txn来初始化msg变量:

void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn)
{
 bio->data = bio->data0 = txn->data;
 bio->offs = bio->offs0 = txn->offs;
 bio->data_avail = txn->data_size;
 bio->offs_avail = txn->offs_size / 4;
 bio->flags = BIO_F_SHARED;
}

最后,真正进行处理的函数是从参数中传进来的函数指针func,这里就是定义在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函数:

int svcmgr_handler(struct binder_state *bs,
     struct binder_txn *txn,
     struct binder_io *msg,
     struct binder_io *reply)
{
 struct svcinfo *si;
 uint16_t *s;
 unsigned len;
 void *ptr;
 uint32_t strict_policy; 

 if (txn->target != svcmgr_handle)
  return -1; 

 // Equivalent to Parcel::enforceInterface(), reading the RPC
 // header with the strict mode policy mask and the interface name.
 // Note that we ignore the strict_policy and don't propagate it
 // further (since we do no outbound RPCs anyway).
 strict_policy = bio_get_uint32(msg);
 s = bio_get_string16(msg, &len);
 if ((len != (sizeof(svcmgr_id) / 2)) ||
  memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
   fprintf(stderr,"invalid id %s\n", str8(s));
   return -1;
 } 

 switch(txn->code) {
 ......
 case SVC_MGR_ADD_SERVICE:
  s = bio_get_string16(msg, &len);
  ptr = bio_get_ref(msg);
  if (do_add_service(bs, s, len, ptr, txn->sender_euid))
   return -1;
  break;
 ......
 } 

 bio_put_uint32(reply, 0);
 return 0;
}

回忆一下,在BpServiceManager::addService时,传给Binder驱动程序的参数为:

writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);
writeString16("android.os.IServiceManager");
writeString16("media.player");
writeStrongBinder(new MediaPlayerService());

这里的语句:

strict_policy = bio_get_uint32(msg);
s = bio_get_string16(msg, &len);
s = bio_get_string16(msg, &len);
ptr = bio_get_ref(msg);

就是依次把它们读取出来了,这里,我们只要看一下bio_get_ref的实现。先看一个数据结构struct binder_obj的定义:

struct binder_object
{
 uint32_t type;
 uint32_t flags;
 void *pointer;
 void *cookie;
};

这个结构体其实就是对应struct flat_binder_obj的。
        接着看bio_get_ref实现:

void *bio_get_ref(struct binder_io *bio)
{
 struct binder_object *obj; 

 obj = _bio_get_obj(bio);
 if (!obj)
  return 0; 

 if (obj->type == BINDER_TYPE_HANDLE)
  return obj->pointer; 

 return 0;
}

_bio_get_obj这个函数就不跟进去看了,它的作用就是从binder_io中取得第一个还没取获取过的binder_object。在这个场景下,就是我们最开始传过来代表MediaPlayerService的flat_binder_obj了,这个原始的flat_binder_obj的type为BINDER_TYPE_BINDER,binder为指向MediaPlayerService的弱引用的地址。在前面我们说过,在Binder驱动驱动程序里面,会把这个flat_binder_obj的type改为BINDER_TYPE_HANDLE,handle改为一个句柄值。这里的handle值就等于obj->pointer的值。

回到svcmgr_handler函数,调用do_add_service进一步处理:

int do_add_service(struct binder_state *bs,
     uint16_t *s, unsigned len,
     void *ptr, unsigned uid)
{
 struct svcinfo *si;
// LOGI("add_service('%s',%p) uid=%d\n", str8(s), ptr, uid); 

 if (!ptr || (len == 0) || (len > 127))
  return -1; 

 if (!svc_can_register(uid, s)) {
  LOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n",
    str8(s), ptr, uid);
  return -1;
 } 

 si = find_svc(s, len);
 if (si) {
  if (si->ptr) {
   LOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED\n",
     str8(s), ptr, uid);
   return -1;
  }
  si->ptr = ptr;
 } else {
  si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
  if (!si) {
   LOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n",
     str8(s), ptr, uid);
   return -1;
  }
  si->ptr = ptr;
  si->len = len;
  memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
  si->name[len] = '\0';
  si->death.func = svcinfo_death;
  si->death.ptr = si;
  si->next = svclist;
  svclist = si;
 } 

 binder_acquire(bs, ptr);
 binder_link_to_death(bs, ptr, &si->death);
 return 0;
}

这个函数的实现很简单,就是把MediaPlayerService这个Binder实体的引用写到一个struct svcinfo结构体中,主要是它的名称和句柄值,然后插入到链接svclist的头部去。这样,Client来向Service Manager查询服务接口时,只要给定服务名称,Service Manger就可以返回相应的句柄值了。

这个函数执行完成后,返回到svcmgr_handler函数,函数的最后,将一个错误码0写到reply变量中去,表示一切正常:

bio_put_uint32(reply, 0);

svcmgr_handler函数执行完成后,返回到binder_parse函数,执行下面语句:

binder_send_reply(bs, &reply, txn->data, res);

我们看一下binder_send_reply的实现,从函数名就可以猜到它要做什么了,告诉Binder驱动程序,它完成了Binder驱动程序交给它的任务了。

void binder_send_reply(struct binder_state *bs,
      struct binder_io *reply,
      void *buffer_to_free,
      int status)
{
 struct {
  uint32_t cmd_free;
  void *buffer;
  uint32_t cmd_reply;
  struct binder_txn txn;
 } __attribute__((packed)) data; 

 data.cmd_free = BC_FREE_BUFFER;
 data.buffer = buffer_to_free;
 data.cmd_reply = BC_REPLY;
 data.txn.target = 0;
 data.txn.cookie = 0;
 data.txn.code = 0;
 if (status) {
  data.txn.flags = TF_STATUS_CODE;
  data.txn.data_size = sizeof(int);
  data.txn.offs_size = 0;
  data.txn.data = &status;
  data.txn.offs = 0;
 } else {
  data.txn.flags = 0;
  data.txn.data_size = reply->data - reply->data0;
  data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);
  data.txn.data = reply->data0;
  data.txn.offs = reply->offs0;
 }
 binder_write(bs, &data, sizeof(data));
}

从这里可以看出,binder_send_reply告诉Binder驱动程序执行BC_FREE_BUFFER和BC_REPLY命令,前者释放之前在binder_transaction分配的空间,地址为buffer_to_free,buffer_to_free这个地址是Binder驱动程序把自己在内核空间用的地址转换成用户空间地址再传给Service Manager的,所以Binder驱动程序拿到这个地址后,知道怎么样释放这个空间;后者告诉MediaPlayerService,它的addService操作已经完成了,错误码是0,保存在data.txn.data中。

再来看binder_write函数:

int binder_write(struct binder_state *bs, void *data, unsigned len)
{
 struct binder_write_read bwr;
 int res;
 bwr.write_size = len;
 bwr.write_consumed = 0;
 bwr.write_buffer = (unsigned) data;
 bwr.read_size = 0;
 bwr.read_consumed = 0;
 bwr.read_buffer = 0;
 res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
 if (res < 0) {
  fprintf(stderr,"binder_write: ioctl failed (%s)\n",
    strerror(errno));
 }
 return res;
}

这里可以看出,只有写操作,没有读操作,即read_size为0。

这里又是一个ioctl的BINDER_WRITE_READ操作。直入到驱动程序的binder_ioctl函数后,执行BINDER_WRITE_READ命令,这里就不累述了。

最后,从binder_ioctl执行到binder_thread_write函数,我们首先看第一个命令BC_FREE_BUFFER:

int
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
     void __user *buffer, int size, signed long *consumed)
{
 uint32_t cmd;
 void __user *ptr = buffer + *consumed;
 void __user *end = buffer + size; 

 while (ptr < end && thread->return_error == BR_OK) {
  if (get_user(cmd, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
   binder_stats.bc[_IOC_NR(cmd)]++;
   proc->stats.bc[_IOC_NR(cmd)]++;
   thread->stats.bc[_IOC_NR(cmd)]++;
  }
  switch (cmd) {
  ......
  case BC_FREE_BUFFER: {
   void __user *data_ptr;
   struct binder_buffer *buffer; 

   if (get_user(data_ptr, (void * __user *)ptr))
    return -EFAULT;
   ptr += sizeof(void *); 

   buffer = binder_buffer_lookup(proc, data_ptr);
   if (buffer == NULL) {
    binder_user_error("binder: %d:%d "
     "BC_FREE_BUFFER u%p no match\n",
     proc->pid, thread->pid, data_ptr);
    break;
   }
   if (!buffer->allow_user_free) {
    binder_user_error("binder: %d:%d "
     "BC_FREE_BUFFER u%p matched "
     "unreturned buffer\n",
     proc->pid, thread->pid, data_ptr);
    break;
   }
   if (binder_debug_mask & BINDER_DEBUG_FREE_BUFFER)
    printk(KERN_INFO "binder: %d:%d BC_FREE_BUFFER u%p found buffer %d for %s transaction\n",
    proc->pid, thread->pid, data_ptr, buffer->debug_id,
    buffer->transaction ? "active" : "finished"); 

   if (buffer->transaction) {
    buffer->transaction->buffer = NULL;
    buffer->transaction = NULL;
   }
   if (buffer->async_transaction && buffer->target_node) {
    BUG_ON(!buffer->target_node->has_async_transaction);
    if (list_empty(&buffer->target_node->async_todo))
     buffer->target_node->has_async_transaction = 0;
    else
     list_move_tail(buffer->target_node->async_todo.next, &thread->todo);
   }
   binder_transaction_buffer_release(proc, buffer, NULL);
   binder_free_buf(proc, buffer);
   break;
        } 

  ......
  *consumed = ptr - buffer;
 }
 return 0;
}

首先通过看这个语句:

get_user(data_ptr, (void * __user *)ptr)

这个是获得要删除的Buffer的用户空间地址,接着通过下面这个语句来找到这个地址对应的struct binder_buffer信息:

buffer = binder_buffer_lookup(proc, data_ptr);

因为这个空间是前面在binder_transaction里面分配的,所以这里一定能找到。

最后,就可以释放这块内存了:

binder_transaction_buffer_release(proc, buffer, NULL);  
            binder_free_buf(proc, buffer);

再来看另外一个命令BC_REPLY:

int
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
     void __user *buffer, int size, signed long *consumed)
{
 uint32_t cmd;
 void __user *ptr = buffer + *consumed;
 void __user *end = buffer + size; 

 while (ptr < end && thread->return_error == BR_OK) {
  if (get_user(cmd, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
   binder_stats.bc[_IOC_NR(cmd)]++;
   proc->stats.bc[_IOC_NR(cmd)]++;
   thread->stats.bc[_IOC_NR(cmd)]++;
  }
  switch (cmd) {
  ......
  case BC_TRANSACTION:
  case BC_REPLY: {
   struct binder_transaction_data tr; 

   if (copy_from_user(&tr, ptr, sizeof(tr)))
    return -EFAULT;
   ptr += sizeof(tr);
   binder_transaction(proc, thread, &tr, cmd == BC_REPLY);
   break;
      } 

  ......
  *consumed = ptr - buffer;
 }
 return 0;
}

又再次进入到binder_transaction函数:

static void
binder_transaction(struct binder_proc *proc, struct binder_thread *thread,
struct binder_transaction_data *tr, int reply)
{
 struct binder_transaction *t;
 struct binder_work *tcomplete;
 size_t *offp, *off_end;
 struct binder_proc *target_proc;
 struct binder_thread *target_thread = NULL;
 struct binder_node *target_node = NULL;
 struct list_head *target_list;
 wait_queue_head_t *target_wait;
 struct binder_transaction *in_reply_to = NULL;
 struct binder_transaction_log_entry *e;
 uint32_t return_error; 

 ...... 

 if (reply) {
  in_reply_to = thread->transaction_stack;
  if (in_reply_to == NULL) {
   ......
   return_error = BR_FAILED_REPLY;
   goto err_empty_call_stack;
  }
  binder_set_nice(in_reply_to->saved_priority);
  if (in_reply_to->to_thread != thread) {
   .......
   goto err_bad_call_stack;
  }
  thread->transaction_stack = in_reply_to->to_parent;
  target_thread = in_reply_to->from;
  if (target_thread == NULL) {
   return_error = BR_DEAD_REPLY;
   goto err_dead_binder;
  }
  if (target_thread->transaction_stack != in_reply_to) {
   ......
   return_error = BR_FAILED_REPLY;
   in_reply_to = NULL;
   target_thread = NULL;
   goto err_dead_binder;
  }
  target_proc = target_thread->proc;
 } else {
  ......
 }
 if (target_thread) {
  e->to_thread = target_thread->pid;
  target_list = &target_thread->todo;
  target_wait = &target_thread->wait;
 } else {
  ......
 } 

 /* TODO: reuse incoming transaction for reply */
 t = kzalloc(sizeof(*t), GFP_KERNEL);
 if (t == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_alloc_t_failed;
 } 

 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
 if (tcomplete == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_alloc_tcomplete_failed;
 } 

 if (!reply && !(tr->flags & TF_ONE_WAY))
  t->from = thread;
 else
  t->from = NULL;
 t->sender_euid = proc->tsk->cred->euid;
 t->to_proc = target_proc;
 t->to_thread = target_thread;
 t->code = tr->code;
 t->flags = tr->flags;
 t->priority = task_nice(current);
 t->buffer = binder_alloc_buf(target_proc, tr->data_size,
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
 if (t->buffer == NULL) {
  return_error = BR_FAILED_REPLY;
  goto err_binder_alloc_buf_failed;
 }
 t->buffer->allow_user_free = 0;
 t->buffer->debug_id = t->debug_id;
 t->buffer->transaction = t;
 t->buffer->target_node = target_node;
 if (target_node)
  binder_inc_node(target_node, 1, 0, NULL); 

 offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 

 if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {
  binder_user_error("binder: %d:%d got transaction with invalid "
   "data ptr\n", proc->pid, thread->pid);
  return_error = BR_FAILED_REPLY;
  goto err_copy_data_failed;
 }
 if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {
  binder_user_error("binder: %d:%d got transaction with invalid "
   "offsets ptr\n", proc->pid, thread->pid);
  return_error = BR_FAILED_REPLY;
  goto err_copy_data_failed;
 } 

 ...... 

 if (reply) {
  BUG_ON(t->buffer->async_transaction != 0);
  binder_pop_transaction(target_thread, in_reply_to);
 } else if (!(t->flags & TF_ONE_WAY)) {
  ......
 } else {
  ......
 }
 t->work.type = BINDER_WORK_TRANSACTION;
 list_add_tail(&t->work.entry, target_list);
 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
 list_add_tail(&tcomplete->entry, &thread->todo);
 if (target_wait)
  wake_up_interruptible(target_wait);
 return;
 ......
}

注意,这里的reply为1,我们忽略掉其它无关代码。

前面Service Manager正在binder_thread_read函数中被MediaPlayerService启动后进程唤醒后,在最后会把当前处理完的事务放在thread->transaction_stack中:

if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
 t->to_parent = thread->transaction_stack;
 t->to_thread = thread;
 thread->transaction_stack = t;
}

所以,这里,首先是把它这个binder_transaction取回来,并且放在本地变量in_reply_to中:

in_reply_to = thread->transaction_stack;

接着就可以通过in_reply_to得到最终发出这个事务请求的线程和进程:

target_thread = in_reply_to->from; 
                      target_proc = target_thread->proc;

然后得到target_list和target_wait:

target_list = &target_thread->todo;  
                    target_wait = &target_thread->wait;

下面这一段代码:

/* TODO: reuse incoming transaction for reply */
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (t == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_alloc_t_failed;
} 

tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
if (tcomplete == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_alloc_tcomplete_failed;
} 

if (!reply && !(tr->flags & TF_ONE_WAY))
 t->from = thread;
else
 t->from = NULL;
t->sender_euid = proc->tsk->cred->euid;
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
t->buffer = binder_alloc_buf(target_proc, tr->data_size,
 tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));
if (t->buffer == NULL) {
 return_error = BR_FAILED_REPLY;
 goto err_binder_alloc_buf_failed;
}
t->buffer->allow_user_free = 0;
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
if (target_node)
 binder_inc_node(target_node, 1, 0, NULL); 

offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 

if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {
 binder_user_error("binder: %d:%d got transaction with invalid "
  "data ptr\n", proc->pid, thread->pid);
 return_error = BR_FAILED_REPLY;
 goto err_copy_data_failed;
}
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {
 binder_user_error("binder: %d:%d got transaction with invalid "
  "offsets ptr\n", proc->pid, thread->pid);
 return_error = BR_FAILED_REPLY;
 goto err_copy_data_failed;
}

我们在前面已经分析过了,这里不再重复。但是有一点要注意的是,这里target_node为NULL,因此,t->buffer->target_node也为NULL。

函数本来有一个for循环,用来处理数据中的Binder对象,这里由于没有Binder对象,所以就略过了。到了下面这句代码:

binder_pop_transaction(target_thread, in_reply_to);

我们看看做了什么事情:

static void
binder_pop_transaction(
 struct binder_thread *target_thread, struct binder_transaction *t)
{
 if (target_thread) {
  BUG_ON(target_thread->transaction_stack != t);
  BUG_ON(target_thread->transaction_stack->from != target_thread);
  target_thread->transaction_stack =
   target_thread->transaction_stack->from_parent;
  t->from = NULL;
 }
 t->need_reply = 0;
 if (t->buffer)
  t->buffer->transaction = NULL;
 kfree(t);
 binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;
}

由于到了这里,已经不需要in_reply_to这个transaction了,就把它删掉。

回到binder_transaction函数:

t->work.type = BINDER_WORK_TRANSACTION;
list_add_tail(&t->work.entry, target_list);
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
list_add_tail(&tcomplete->entry, &thread->todo); 

和前面一样,分别把t和tcomplete分别放在target_list和thread->todo队列中,这里的target_list指的就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程的的thread->todo队列了,而thread->todo指的是Service Manager中用来回复IServiceManager::addService请求的线程。

最后,唤醒等待在target_wait队列上的线程了,就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程了,它最后在binder_thread_read函数中睡眠在thread->wait上,就是这里的target_wait了:

if (target_wait)  
                              wake_up_interruptible(target_wait);

这样,Service Manger回复调用IServiceManager::addService请求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数等待下一个Client请求的到来。事实上,Service Manger回到binder_loop函数再次执行ioctl函数时候,又会再次进入到binder_thread_read函数。这时个会发现thread->todo不为空,这是因为刚才我们调用了:

list_add_tail(&tcomplete->entry, &thread->todo);

把一个工作项tcompelete放在了在thread->todo中,这个tcompelete的type为BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驱动程序会执行下面操作:

switch (w->type) {
case BINDER_WORK_TRANSACTION_COMPLETE: {
 cmd = BR_TRANSACTION_COMPLETE;
 if (put_user(cmd, (uint32_t __user *)ptr))
  return -EFAULT;
 ptr += sizeof(uint32_t); 

 list_del(&w->entry);
 kfree(w); 

 } break;
 ......
}

binder_loop函数执行完这个ioctl调用后,才会在下一次调用ioctl进入到Binder驱动程序进入休眠状态,等待下一次Client的请求。

上面讲到调用IServiceManager::addService的MediaPlayerService的Server主线程被唤醒了,于是,重新执行binder_thread_read函数:

static int
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
     void __user *buffer, int size, signed long *consumed, int non_block)
{
 void __user *ptr = buffer + *consumed;
 void __user *end = buffer + size; 

 int ret = 0;
 int wait_for_proc_work; 

 if (*consumed == 0) {
  if (put_user(BR_NOOP, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
 } 

retry:
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 

 ...... 

 if (wait_for_proc_work) {
  ......
 } else {
  if (non_block) {
   if (!binder_has_thread_work(thread))
    ret = -EAGAIN;
  } else
   ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));
 } 

 ...... 

 while (1) {
  uint32_t cmd;
  struct binder_transaction_data tr;
  struct binder_work *w;
  struct binder_transaction *t = NULL; 

  if (!list_empty(&thread->todo))
   w = list_first_entry(&thread->todo, struct binder_work, entry);
  else if (!list_empty(&proc->todo) && wait_for_proc_work)
   w = list_first_entry(&proc->todo, struct binder_work, entry);
  else {
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */
    goto retry;
   break;
  } 

  ...... 

  switch (w->type) {
  case BINDER_WORK_TRANSACTION: {
   t = container_of(w, struct binder_transaction, work);
          } break;
  ......
  } 

  if (!t)
   continue; 

  BUG_ON(t->buffer == NULL);
  if (t->buffer->target_node) {
   ......
  } else {
   tr.target.ptr = NULL;
   tr.cookie = NULL;
   cmd = BR_REPLY;
  }
  tr.code = t->code;
  tr.flags = t->flags;
  tr.sender_euid = t->sender_euid; 

  if (t->from) {
   ......
  } else {
   tr.sender_pid = 0;
  } 

  tr.data_size = t->buffer->data_size;
  tr.offsets_size = t->buffer->offsets_size;
  tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;
  tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 

  if (put_user(cmd, (uint32_t __user *)ptr))
   return -EFAULT;
  ptr += sizeof(uint32_t);
  if (copy_to_user(ptr, &tr, sizeof(tr)))
   return -EFAULT;
  ptr += sizeof(tr); 

  ...... 

  list_del(&t->work.entry);
  t->buffer->allow_user_free = 1;
  if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {
   ......
  } else {
   t->buffer->transaction = NULL;
   kfree(t);
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;
  }
  break;
 } 

done:
 ......
 return 0;
}

在while循环中,从thread->todo得到w,w->type为BINDER_WORK_TRANSACTION,于是,得到t。从上面可以知道,Service Manager反回了一个0回来,写在t->buffer->data里面,现在把t->buffer->data加上proc->user_buffer_offset,得到用户空间地址,保存在tr.data.ptr.buffer里面,这样用户空间就可以访问这个返回码了。由于cmd不等于BR_TRANSACTION,这时就可以把t删除掉了,因为以后都不需要用了。

执行完这个函数后,就返回到binder_ioctl函数,执行下面语句,把数据返回给用户空间:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
 ret = -EFAULT;
 goto err;
}

接着返回到用户空间IPCThreadState::talkWithDriver函数,最后返回到IPCThreadState::waitForResponse函数,最终执行到下面语句:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
 int32_t cmd;
 int32_t err; 

 while (1) {
  if ((err=talkWithDriver()) < NO_ERROR) break; 

  ...... 

  cmd = mIn.readInt32(); 

  ...... 

  switch (cmd) {
  ......
  case BR_REPLY:
   {
    binder_transaction_data tr;
    err = mIn.read(&tr, sizeof(tr));
    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
    if (err != NO_ERROR) goto finish; 

    if (reply) {
     if ((tr.flags & TF_STATUS_CODE) == 0) {
      reply->ipcSetDataReference(
       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
       tr.data_size,
       reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
       tr.offsets_size/sizeof(size_t),
       freeBuffer, this);
     } else {
      ......
     }
    } else {
     ......
    }
   }
   goto finish; 

  ......
  }
 } 

finish:
 ......
 return err;
}

注意,这里的tr.flags等于0,这个是在上面的binder_send_reply函数里设置的。最终把结果保存在reply了:

reply->ipcSetDataReference(
  reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
  tr.data_size,
  reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
  tr.offsets_size/sizeof(size_t),
  freeBuffer, this);

这个函数我们就不看了,有兴趣的读者可以研究一下。

从这里层层返回,最后回到MediaPlayerService::instantiate函数中。

至此,IServiceManager::addService终于执行完毕了。这个过程非常复杂,但是如果我们能够深刻地理解这一过程,将能很好地理解Binder机制的设计思想和实现过程。这里,对IServiceManager::addService过程中MediaPlayerService、ServiceManager和BinderDriver之间的交互作一个小结:

回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,接下去还要执行下面两个函数:

ProcessState::self()->startThreadPool(); 
                 IPCThreadState::self()->joinThreadPool();

首先看ProcessState::startThreadPool函数的实现:

void ProcessState::startThreadPool()
{
 AutoMutex _l(mLock);
 if (!mThreadPoolStarted) {
  mThreadPoolStarted = true;
  spawnPooledThread(true);
 }
}

这里调用spwanPooledThread:

void ProcessState::spawnPooledThread(bool isMain)
{
 if (mThreadPoolStarted) {
  int32_t s = android_atomic_add(1, &mThreadPoolSeq);
  char buf[32];
  sprintf(buf, "Binder Thread #%d", s);
  LOGV("Spawning new pooled thread, name=%s\n", buf);
  sp<Thread> t = new PoolThread(isMain);
  t->run(buf);
 }
}

这里主要是创建一个线程,PoolThread继续Thread类,Thread类定义在frameworks/base/libs/utils/Threads.cpp文件中,其run函数最终调用子类的threadLoop函数,这里即为PoolThread::threadLoop函数:

virtual bool threadLoop()
{
 IPCThreadState::self()->joinThreadPool(mIsMain);
 return false;
}

这里和frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数一样,最终都是调用了IPCThreadState::joinThreadPool函数,它们的区别是,一个参数是true,一个是默认值false。我们来看一下这个函数的实现:

void IPCThreadState::joinThreadPool(bool isMain)
{
 LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid()); 

 mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER); 

 ...... 

 status_t result;
 do {
  int32_t cmd; 

  ....... 

  // now get the next command to be processed, waiting if necessary
  result = talkWithDriver();
  if (result >= NO_ERROR) {
   size_t IN = mIn.dataAvail();
   if (IN < sizeof(int32_t)) continue;
   cmd = mIn.readInt32();
   ......
   } 

   result = executeCommand(cmd);
  } 

  ......
 } while (result != -ECONNREFUSED && result != -EBADF); 

 ....... 

 mOut.writeInt32(BC_EXIT_LOOPER);
 talkWithDriver(false);
}

这个函数最终是在一个无穷循环中,通过调用talkWithDriver函数来和Binder驱动程序进行交互,实际上就是调用talkWithDriver来等待Client的请求,然后再调用executeCommand来处理请求,而在executeCommand函数中,最终会调用BBinder::transact来真正处理Client的请求:

status_t IPCThreadState::executeCommand(int32_t cmd)
{
 BBinder* obj;
 RefBase::weakref_type* refs;
 status_t result = NO_ERROR; 

 switch (cmd) {
 ...... 

 case BR_TRANSACTION:
  {
   binder_transaction_data tr;
   result = mIn.read(&tr, sizeof(tr)); 

   ...... 

   Parcel reply; 

   ...... 

   if (tr.target.ptr) {
    sp<BBinder> b((BBinder*)tr.cookie);
    const status_t error = b->transact(tr.code, buffer, &reply, tr.flags);
    if (error < NO_ERROR) reply.setError(error); 

   } else {
    const status_t error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
    if (error < NO_ERROR) reply.setError(error);
   } 

   ......
  }
  break; 

 .......
 } 

 if (result != NO_ERROR) {
  mLastError = result;
 } 

 return result;
}

接下来再看一下BBinder::transact的实现:

status_t BBinder::transact(
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
 data.setDataPosition(0); 

 status_t err = NO_ERROR;
 switch (code) {
  case PING_TRANSACTION:
   reply->writeInt32(pingBinder());
   break;
  default:
   err = onTransact(code, data, reply, flags);
   break;
 } 

 if (reply != NULL) {
  reply->setDataPosition(0);
 } 

 return err;
}

最终会调用onTransact函数来处理。在这个场景中,BnMediaPlayerService继承了BBinder类,并且重载了onTransact函数,因此,这里实际上是调用了BnMediaPlayerService::onTransact函数,这个函数定义在frameworks/base/libs/media/libmedia/IMediaPlayerService.cpp文件中:

status_t BnMediaPlayerService::onTransact(
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
 switch(code) {
  case CREATE_URL: {
   ......
       } break;
  case CREATE_FD: {
   ......
      } break;
  case DECODE_URL: {
   ......
       } break;
  case DECODE_FD: {
   ......
      } break;
  case CREATE_MEDIA_RECORDER: {
   ......
         } break;
  case CREATE_METADATA_RETRIEVER: {
   ......
          } break;
  case GET_OMX: {
   ......
      } break;
  default:
   return BBinder::onTransact(code, data, reply, flags);
 }
}

至此,我们就以MediaPlayerService为例,完整地介绍了Android系统进程间通信Binder机制中的Server启动过程。Server启动起来之后,就会在一个无穷循环中等待Client的请求了。在下一篇文章中,我们将介绍Client如何通过Service Manager远程接口来获得Server远程接口,进而调用Server远程接口来使用Server提供的服务,敬请关注。

(0)

相关推荐

  • 理解Android系统Binder机制

    一.Binder机制概述 在Android开发中,很多时候我们需要用到进程间通信,所谓进程间通信,实现进程间通信的机制有很多种,比如说socket.pipe等,Android中进程间通信的方式主要有三种: 1.标准Linux Kernel IPC 接口: 2.标准D-BUS接口: 3.Binder接口. 其中,Binder机制是使用最且最被认可的,因为Binder机制有以下优点: 1.相对于其它IPC机制,Binder机制更加简洁和快速: 2.消耗的内存相对更少: 3.传统的IPC机制可能会增加

  • Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路

    在前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路中,介绍了Service Manager是如何成为Binder机制的守护进程的.既然作为守护进程,Service Manager的职责当然就是为Server和Client服务了.那么,Server和Client如何获得Service Manager接口,进而享受它提供的服务呢?本文将简要分析Server和Client获得Service Manager的过程. 在阅读本文之前,希望读者

  • Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析

    在上一篇文章中,我们分析了Android系统进程间通信机制Binder中的Server在启动过程使用Service Manager的addService接口把自己添加到Service Manager守护过程中接受管理.在这一篇文章中,我们将深入到Binder驱动程序源代码去分析Client是如何通过Service Manager的getService接口中来获得Server远程接口的.Client只有获得了Server的远程接口之后,才能进一步调用Server提供的服务. 这里,我们仍然是通过A

  • Android进程间通信(IPC)机制Binder简要介绍

    在Android系统中,每一个应用程序都是由一些Activity和Service组成的,这些Activity和Service有可能运行在同一个进程中,也有可能运行在不同的进程中.那么,不在同一个进程的Activity或者Service是如何通信的呢?这就是本文中要介绍的Binder进程间通信机制了. 我们知道,Android系统是基于Linux内核的,而Linux内核继承和兼容了丰富的Unix系统进程间通信(IPC)机制.有传统的管道(Pipe).信号(Signal)和跟踪(Trace),这三项

  • 浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路

    上一篇文章Android进程间通信(IPC)机制Binder简要介绍和学习计划简要介绍了Android系统进程间通信机制Binder的总体架构,它由Client.Server.Service Manager和驱动程序Binder四个组件构成.本文着重介绍组件Service Manager,它是整个Binder机制的守护进程,用来管理开发者创建的各种Server,并且向Client提供查询Server远程接口的功能. 既然Service Manager组件是用来管理Server并且向Client提

  • Android深入浅出之Binder机制

    Android深入浅出之Binder机制 一 说明 Android系统最常见也是初学者最难搞明白的就是Binder了,很多很多的Service就是通过Binder机制来和客户端通讯交互的.所以搞明白Binder的话,在很大程度上就能理解程序运行的流程. 我们这里将以MediaService的例子来分析Binder的使用: ServiceManager,这是Android OS的整个服务的管理程序 MediaService,这个程序里边注册了提供媒体播放的服务程序MediaPlayerServic

  • Android学习之介绍Binder的简单使用

    前言 最近因为公司项目需求,需要远程调度启动客户端输入法输入内容. 这就是大致的需求流程,这篇首先讲远程与服务控制端通讯.首先控制服务端定义好一个Service,且在ServiceManager注册添加服务. 在这里我讲解远程端与服务控制端通讯(主要通过C++往ServiceManager注册服务). 首先我们得获取到服务控制端注册在ServiceManager的服务IBinder对象,通过Java反射机制获得Ibinder接口对象. public static IBinder getRemot

  • Android系统进程间通信Binder机制在应用程序框架层的Java接口源代码分析

    在前面几篇文章中,我们详细介绍了Android系统进程间通信机制Binder的原理,并且深入分析了系统提供的Binder运行库和驱动程序的源代码.细心的读者会发现,这几篇文章分析的Binder接口都是基于C/C++语言来实现的,但是我们在编写应用程序都是基于Java语言的,那么,我们如何使用Java语言来使用系统的Binder机制来进行进程间通信呢?这就是本文要介绍的Android系统应用程序框架层的用Java语言来实现的Binder接口了. 熟悉Android系统的读者,应该能想到应用程序框架

  • android IPC之binder通信机制

    Binder通信机制说来简单,但是在使用的过程的遇到了一些问题,最后终于解决了,在这总结一下,一并分享给大家: 1.要使用Binder通信,首先要定义接口,然后实现服务端BnInterface***和客户端BpInterface***,说到底一个是把参数解包,一个是把参数打包. 2.服务端要能够接收Binder调用请求,要具备两个条件:一个是实现Bn接口,另一个是调用IPCProcess()->self->startThreadPool() IPCThread()->Self->j

  • Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析

    在前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中,介绍了在Android系统中Binder进程间通信机制中的Server角色是如何获得Service Manager远程接口的,即defaultServiceManager函数的实现.Server获得了Service Manager远程接口之后,就要把自己的Service添加到Service Manager中去,然后把自己启动起来,等待Client的请求.

  • 使用C++11实现Android系统的Handler机制

    封面出自:板栗懒得很背景 线程作为系统的基础资源,相信大多数读者都有使用到.一般情况下我们会直接开一个线程做一些耗时操作,处理完之后让线程自动结束,资源被系统回收.这种简单粗暴的方法不少读者.甚至一些大厂的APP都在用.以Java语言为例,我们可以直接new一个Thread对象,然后覆盖run方法,最后调一下start方法便可以成功运行一个线程.如果我们每次异步做一些耗时处理都单独开启一个线程,比如异步加载网络图片这种高并发操作,每张图片都开一个线程的话,必然会造成线程资源的浪费,而且也没有很好

  • Android 系统服务TelecomService启动过程原理分析

    由于一直负责的是Android Telephony部分的开发工作,对于通信过程的上层部分Telecom服务以及UI都没有认真研究过.最近恰好碰到一个通话方面的问题,涉及到了Telecom部分,因而就花时间仔细研究了下相关的代码.这里做一个简单的总结.这篇文章,主要以下两个部分的内容: 什么是Telecom服务?其作用是什么? Telecom模块的启动与初始化过程: 接下来一篇文章,主要以实际通话过程为例,分析下telephony收到来电后如何将电话信息发送到Telecom模块以及Telecom是

  • Android Service启动过程完整分析

    刚开始学习Service的时候以为它是一个线程的封装,也可以执行耗时操作.其实不然,Service是运行在主线程的.直接执行耗时操作是会阻塞主线程的.长时间就直接ANR了. 我们知道Service可以执行一些后台任务,是后台任务不是耗时的任务,后台和耗时是有区别的喔. 这样就很容易想到音乐播放器,天气预报这些应用是要用到Service的.当然如果要在Service中执行耗时操作的话,开个线程就可以了. 关于Service的运行状态有两种,启动状态和绑定状态,两种状态可以一起. 启动一个Servi

  • 深入讲解spring boot中servlet的启动过程与原理

    前言 本文主要介绍了关于spring boot中servlet启动过程与原理的相关内容,下面话不多说了,来一起看看详细的介绍吧 启动过程与原理: 1 spring boot 应用启动运行run方法 StopWatch stopWatch = new StopWatch(); stopWatch.start(); ConfigurableApplicationContext context = null; FailureAnalyzers analyzers = null; configureHe

随机推荐