javascript算法之二叉搜索树的示例代码

什么是二叉树

二叉树就是树的每个节点最多只能有两个子节点

什么是二叉搜索树

二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插入到左节点,否则插入到右节点;若插入过程中,左节点或右节点已经存在,那么继续按如上规则比较,直到遇到一个新的节点。

二叉搜索树的特性

二叉搜索树由于其独特的数据结构,使得其无论在增删,还是查找,时间复杂度都是O(h),h为二叉树的高度。因此二叉树应该尽量的矮,即左右节点尽量平衡。

二叉搜索树的构造

要构造二叉搜索树,首先要构造二叉树的节点类。由二叉树的特点可知,每个节点类都有一个左节点,右节点以及值本身,因此节点类如下:

class Node {
 constructor(key) {
  this.key = key;
  this.left = null;
  this.right = null;
 }
}

接着构造二叉搜索树

class Tree{
 constructor(param = null) {
  if (param) {
   this.root = new Node(param);
  } else {
   this.root = null;
  }
 }
}

这里this.root就是当前对象的树。

二叉搜索树的新增

由二叉搜索树左子树比节点小,右子树别节点大的特点,可以很简单的写出二叉搜索树新增的算法,如下:

insert(key) {
 if (this.root === null) {
  this.root = new Node(key);
 } else {
  this._insertNode(this.root, key);
 }
}
_insertNode(node, key) {
 if (key < node.key) {
  if (node.left === null) {
   node.left = new Node(key);{1}
  } else {
   this._insertNode(node.left, key);{2}
  }
 } else if (key > node.key) {
  if (node.right === null) {
   node.right = new Node(key);{3}
  } else {
   this._insertNode(node.right, key);{4}
  }
 }
}

如上代码先判断新增的key与当前节点的key大小,如果小,就递归遍历左子节点,直到找到一个为null的左子节点;如果比当前节点大同理。如上代码{1}{2}{3}{4}之所以能改变this.root的值,是由于JavaScript函数是按值传递,而当参数是非基本类型时,例如这里的对象,其对象的值为内存,因此每次都会直接改变this.root的内容。

二叉搜索树的遍历

二叉搜索树分为先序、中序、后序三种遍历方式。

inOrderTraverse(callback) {
 this._inOrderTraverse(this.root, callback);
}
_inOrderTraverse(node, callback) {
 if (node) {
  this._inOrderTraverse(node.left, callback);
  callback(node.key);
  this._inOrderTraverse(node.right, callback);
 }
}

如上是中序遍历。

这里需要理解的一点是递归。要知道,函数的执行可以抽象为一种数据结构——栈。针对函数的执行,会维护一个栈,来存储函数的执行。函数在每一次递归时,都会将当前的执行环境入栈并记录执行的位置。以上述代码为例,有如下一个数据

其会从11开始,执行{1}入栈,然后进入7,接着执行{1}入栈,然后到5,执行{1}入栈,再到3,执行{1}入栈,此时发现节点3的左子节点为null,因此开始出栈,此时弹出节点3的执行环境,执行{2},{3},发现3的右侧子节点也为null,{3}的递归执行完毕,接着弹出节点5,执行{2}{3},接着弹出7,执行{2}{3}入栈,执行{3}时,发现节点7有右节点,因此继续执行{1},到节点8,再执行{1},8没有左子节点,{1}执行完毕,执行{2}{3},以此类推。

而前序与中序的不同点在于其先访问节点本身,也就是代码的执行顺序为 2 1 3。

后序同理,执行顺序为1 3 2

不难发现,无论前中后序,永远都是先递归左节点,当左节点遍历完毕时再弹出栈,遍历有节点。他们唯一不同的点在与访问该节点本身的时机。

二叉搜索树的查找

查找很简单,根据左子节点比该节点小,右子节点比该节点大的原则进行循环判断即可。

search(value) {
 if (this.root) {
  if (value === this.root.key) {
   return true;
  } else {
   return this._searchNode(value, this.root);
  }
 }
 throw new Error('this.root 不存在');
}
_searchNode(value, node) {
 if (!node) {
  return false;
 }
 if (value === node.key) {
  return true;
 }
 if (value > node.key) {
  return this._searchNode(value, node.right);
 } else if (value < node.key) {
  return this._searchNode(value, node.left);
 }
}

二叉搜索树的删除

删除较为复杂,需要根据不同情况判断

首先判断该节点是否有左子树,如果没有左子节树,则直接将右子树的根节点替换被删除节点;

如果有,则将右子树的最小节点替换被删除节点;

remove(key) {
 this._removeNode(this.root, key);
}
_removeNode(node, value) {
 if (!node) {
  return null;
 }
 if (value > node.key) {
  node.right = this._removeNode(node.right, value);
 } else if (value < node.key) {
  node.left = this._removeNode(node.left, value);
 } else {
  // 如果没有左子树,那么将右子树根节点作为替换节点
  if (!node.left) {
   return node.right;
   // 如果存在左子树,那么取右子树最小节点作为替换节点
  } else if (node.left) {
   return this._minNode(node.right);
  }
 }
}

总结

总的来说,通过这次简单的二叉搜索树的学习,让我重新认识了递归,以前对于递归的理解只是一些简单的理论概念,这次深入实践让我对递归的理解又加深了许多。

这让我想到了数学的学习,数学的理论公式是很容易记住掌握的,如果说对一个知识点的掌握满分是十分,那么直到真正去实践它之前,只看公式的掌握只能是2分,因为公式很简单,就几句话几个原则,但是遇到的问题是千变万化的,只有真正将理论付诸实践,经过各种实践的打磨蹂躏,才能真正理解它其中的奥秘。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Javascript实现从小到大的数组转换成二叉搜索树

    废话不多说了,直接给大家贴代码了,具体代码如下所示: var Array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; var Tree = createTree(Array); console.log(Tree); // 构造一个节点 function Node(nodeData, leftData, rightData) { this.nodeData = nodeData; this.leftData = leftData; this.rightData = rig

  • javascript数据结构之二叉搜索树实现方法

    本文实例讲述了javascript二叉搜索树实现方法.分享给大家供大家参考,具体如下: 二叉搜索树:顾名思义,树上每个节点最多只有二根分叉:而且左分叉节点的值 < 右分叉节点的值 . 特点:插入节点.找最大/最小节点.节点值排序 非常方便 二叉搜索树-javascript实现 <script type="text/javascript"> // <![CDATA[ //打印输出 function println(msg) { document.write(msg

  • javascript算法之二叉搜索树的示例代码

    什么是二叉树 二叉树就是树的每个节点最多只能有两个子节点 什么是二叉搜索树 二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插入到左节点,否则插入到右节点:若插入过程中,左节点或右节点已经存在,那么继续按如上规则比较,直到遇到一个新的节点. 二叉搜索树的特性 二叉搜索树由于其独特的数据结构,使得其无论在增删,还是查找,时间复杂度都是O(h),h为二叉树的高度.因此二叉树应该尽量的矮,即左右节点尽量平衡. 二叉搜索树的构造 要构造二叉搜索树,首先要构造二叉树

  • Java C++ 算法题解leetcode669修剪二叉搜索树示例

    目录 题目要求 思路一:模拟迭代 Java C++ 思路二:递归 Java C++ Rust 题目要求 思路一:模拟迭代 依次判断每个节点是否合法: 首先找出结果的根,若原根小了就拉右边的过来,大了拉左边的过来做新根: 然后分别判断左右子树的大小,由于二叉搜索树的性质,子树只需要判断一边就好: 左子树判断是否>low,合法就向左下走,不合法往右下: 右子树判断是否<high,合法就向右下走,不合法往左下. Java class Solution { public TreeNode trimBS

  • 如何利用JavaScript实现二叉搜索树

    计算机科学中最常用和讨论最多的数据结构之一是二叉搜索树.这通常是引入的第一个具有非线性插入算法的数据结构.二叉搜索树类似于双链表,每个节点包含一些数据,以及两个指向其他节点的指针:它们在这些节点彼此相关联的方式上有所不同.二叉搜索树节点的指针通常被称为"左"和"右",用来指示与当前值相关的子树.这种节点的简单 JavaScript 实现如下: var node = { value: 125, left: null, right: null }; 从名称中可以看出,二

  • 前端算法leetcode109题解有序链表转换二叉搜索树

    目录 题目 解题思路-基础 代码实现 解题思路-优化 代码实现 解题思路-进阶 代码实现 题目 题目地址 给定一个单链表的头节点  head ,其中的元素 按升序排序 ,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差不超过 1. 示例 1: 输入: head = [-10,-3,0,5,9] 输出: [0,-3,9,-10,null,5] 解释: 一个可能的答案是[0,-3,9,-10,null,5],它表示所示的高度平衡的二叉搜索树.

  • C语言判定一棵二叉树是否为二叉搜索树的方法分析

    本文实例讲述了C语言判定一棵二叉树是否为二叉搜索树的方法.分享给大家供大家参考,具体如下: 问题 给定一棵二叉树,判定该二叉树是否是二叉搜索树(Binary Search Tree)? 解法1:暴力搜索 首先说明一下二叉树和二叉搜索树的区别.二叉树指这样的树结构,它的每个结点的孩子数目最多为2个:二叉搜索树是一种二叉树,但是它有附加的一些约束条件,这些约束条件必须对每个结点都成立: 结点node的左子树所有结点的值都小于node的值. 结点node的右子树所有结点的值都大于node的值. 结点n

  • 在Java中实现二叉搜索树的全过程记录

    目录 二叉搜索树 有序符号表的 API 实现二叉搜索树 二叉搜索树类 查找 插入 最小/大的键 小于等于 key 的最大键/大于等于 key 的最小键 根据排名获得键 根据键获取排名 删除 总结 二叉搜索树 二叉搜索树结合了无序链表插入便捷和有序数组二分查找快速的特点,较为高效地实现了有序符号表.下图显示了二叉搜索树的结构特点(图片来自<算法第四版>): 可以看到每个父节点下都可以连着两个子节点,键写在节点上,其中左边的子节点的键小于父节点的键,右节点的键大于父节点的键.每个父节点及其后代节点

  • Python二叉搜索树与双向链表转换算法示例

    本文实例讲述了Python二叉搜索树与双向链表转换算法.分享给大家供大家参考,具体如下: 题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 普通的二叉树也可以转换成双向链表,只不过不是排序的 思路: 1. 与中序遍历相同 2. 采用递归,先链接左指针,再链接右指针 代码1,更改doubleLinkedList,最后返回list的第一个元素: class TreeNode: def __init__(self, x): s

  • JavaScript二叉搜索树构建操作详解

    目录 前言 什么是二叉搜索树 构建一颗二叉搜索树 二叉搜索树的操作 向二叉搜索树中插入数据 查找二叉搜索树中的数据 删除二叉搜索树的某个节点 前驱后继节点 删除一个节点的三种情况 实现代码 完整代码 总结 前言 前面我们介绍了二叉树这个数据结构以及二叉树的遍历算法,这篇文章我们来学习一下一个特殊的二叉树——二叉搜索树(BST Binary Search Tree),也叫二叉排序树.二叉查找树. 什么是二叉搜索树 二叉搜索树首先它是一棵二叉树,而且还满足下面这些特质: 对于任何一个非空节点来说,它

随机推荐