MySQL的id关联和索引使用的实际优化案例

昨晚收到客服MM电话,一用户反馈数据库响应非常慢,手机收到load异常报警,登上主机后发现大量sql执行非常慢,有的执行时间超过了10s
优化点一:

SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.00′ ORDER BY tran_id DESC LIMIT 10;

表结构为:

CREATE TABLE `game_shares_buy_list` (
`tran_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`………..'
PRIMARY KEY (`tran_id`),
KEY `ind_username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=3144200 DEFAULT CHARSET=utf8;

执行计划:

root@127.0.0.1 : sitevipdb 09:10:22> explain SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.00′ ORDER BY tran_id DESC LIMIT 10;
+—-+————-+———————-+——-+—————+———+———+——+——+————-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+———————-+——-+—————+———+———+——+——+————-+
| 1 | SIMPLE | game_shares_buy_list | index | NULL | PRIMARY | 4 | NULL | 10 | Using where |
+—-+————-+———————-+——-+—————+———+———+——+——+————-+
1 row in set (0.00 sec)

分析该sql的执行计划,由于tran_id是表的主键,所以查询根据主键降序顺序扫描,这样就可以不用排序,
然后在过滤条件price>2.00的记录,看上去这个执行计划貌似非常好,如果查询扫描到了满足条件的10条记录,就会停止扫描;
但是这里有个问题,如果表中有大量的记录是不符合2.00的,意味查询就需要扫描非常多的记录,才能找到符合条件的10条:

root@127.0.0.1 : sitevipdb 09:17:23> select price,count(*) as cnt from `game_shares_buy_list` group by price order by cnt desc limit 10;
+——-+——-+
| price | cnt |
+——-+——-+
| 1.75 | 39101 |
| 1.68 | 38477 |
| 1.71 | 34869 |
| 1.66 | 34849 |
| 1.72 | 34718 |
| 1.70 | 33996 |
| 1.76 | 32527 |
| 1.69 | 27189 |
| 1.61 | 25694 |
| 1.25 | 25450 |

可以看到表中有大量的记录不是2.00的,所以这个时候不能在根据主键顺序扫描,在过滤记录;
那么是否需要在price建立一个索引:

root@127.0.0.1 : sitevipdb 09:09:01> select count(*) from `game_shares_buy_list` where price>'2′;
+———-+
| count(*) |
+———-+
| 4087 |
+———-+
root@127.0.0.1 : sitevipdb 09:17:31> select count(*) from `game_shares_buy_list` ;
+———-+
| count(*) |
+———-+
| 1572100 |

从上面price的数据分布可以看出,price的分布相对还是比较集中的,如果在price建立索引,mysql也有可能认为由于需要回表的记录过多,
同时需要额外的排序,而不选择在price上的索引:

root@127.0.0.1 : sitevipdb 09:24:53> alter table game_shares_buy_list add index ind_game_shares_buy_list_price(price);
Query OK, 0 rows affected (5.79 sec)

可以看到优化器虽然注意到了我们新加的索引,但是最终还是选择了primary来扫描;
所以这个时候我们加上去的索引没有产生效果,数据库负载依然很高,如果强制走price上的索引,效果会这样:

root@127.0.0.1 : sitevipdb 09:35:38> SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.0′ ORDER BY tran_id DESC LIMIT 10;
。。。。。
10 rows in set (7.06 sec)

root@127.0.0.1 : sitevipdb 09:36:00> SELECT * FROM `sitevipdb`.`game_shares_buy_list` force index(ind_game_shares_buy_list_price) WHERE price>='2.0′ ORDER BY tran_id DESC LIMIT 10;
。。。。
10 rows in set (1.01 sec)

可以看到如果强制走索引,时间已经明显下降了,但是还是有些慢,能不能在快一点?其实我们需要扫描的记录只有10条,但查询在取得这10条记录的时候需要扫描大量无效的记录

怎么降低这个数据:其实只要改写一下sql就可以,我们先从索引中得到满足条件的10个id,在回表进行关联:

root@127.0.0.1 : sitevipdb 09:44:45> select * from game_shares_buy_list t1,
-> ( SELECT tran_id FROM sitevipdb.game_shares_buy_list WHERE price>='2.0′ ORDER BY tran_id DESC LIMIT 10) t2
-> where t1.tran_id=t2.tran_id;
10 rows in set (0.00 sec)

可以看到执行时间已经不在秒级别了,和客户电话沟通后,很愿意这样改写sql。

—这里看到是order by tran_id是要额外排序的,索引也可以这样来建立消除排序(tran_id,price)这样可以消除排序,同时可以利用order by desc/asc +limit M,N的优化。

优化点二:

CREATE TABLE `game_session` (
`session_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT ,
`session_expires` int(10) unsigned NOT NULL DEFAULT '0′,
`client_ip` varchar(16) DEFAULT NULL,
`session_data` text,
…………………….
PRIMARY KEY (`session_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

查询为select `session_data`, `session_expires` from `game_session` where session_id='xxx'出现大量等待情况
同时该表的insert,也有等待的现象;
可以看到这个表结构设计是有些问题的,咨询了客户后,可以改为下面结构:

CREATE TABLE `game_session` (
id int auto_increment,
`session_id` varchar(30) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT ,
`session_expires` int(10) unsigned NOT NULL DEFAULT '0′,
`client_ip` varchar(16) DEFAULT NULL,
`session_data` varchar(200),
PRIMARY KEY (id),
key ind_session_id(session_id,session_data, session_expires)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

小结:

  1. 新增自增主键id作为表的主键,这样对插入的性能提升是很好的,同时也降低了表主键的大小;
  2. 将session_data由text改为了varchar(200),咨询了客户后,这个字段可以不用大字段存储,同时有text改为了varchar,就可以冗余到索引中;
  3. 由于查询可以使用覆盖索引来完成,所以将查询的3个字段冗余到索引中,查询通过索引完成,不用回表
(0)

相关推荐

  • 图文详解MySQL中两表关联的连接表如何创建索引

    本文介绍了MySQL中两表关联的连接表是如何创建索引的相关内容,分享出来供大家参考学习,下面来看看详细的介绍: 问题介绍 创建数据库的索引,可以选择单列索引,也可以选择创建组合索引. 遇到如下这种情况,用户表(user)与部门表(dept)通过部门用户关联表(deptuser)连接起来,如下图所示: 表间关系 问题就是,在这个关联表中该如何建立索引呢? 针对该表,有如下四种选择: 针对于user_uuid建立单列索引idx_user 针对于user_dept建立单列索引idx_dept 建立组合

  • MySQL的id关联和索引使用的实际优化案例

    昨晚收到客服MM电话,一用户反馈数据库响应非常慢,手机收到load异常报警,登上主机后发现大量sql执行非常慢,有的执行时间超过了10s 优化点一: SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.00′ ORDER BY tran_id DESC LIMIT 10; 表结构为: CREATE TABLE `game_shares_buy_list` ( `tran_id` int(10) unsigned NOT

  • Mysql多表关联不走索引的原因及分析

    目录 一.准备过程 二.比较 三.千万级别的数据查询个人优化建议 四.MYSQL多表查询的区别 总结 刚入职第一天,有个大佬写了一个统计函数count(*)需要对两张表a,b做统计.咋一看挺简单的,可是表a有1000万条数据,表b有300万条数据.使用LEFT JOIN进行查询.结果,一直查询不出来,可能时间就很久了.然后,这个锅就甩给第一天入职的我(我???). 接下来,就研究一下如何对海量数据的查询进行优化. 一.准备过程 1.创建两张表,表A large_student_tb(幼儿园大班学

  • MySQL 索引优化案例

    目录 数据准备 联合索引的首字段用范围查询 强制走索引 覆盖索引优化 in和or什么时候会走索引 like xx% 一般都会走索引,和数据量无关 索引下推 为什么范围查找没有用索引下推优化? 如何选择索引 Trace 工具 深入优化 order by 和 group by 优化总结 Using filesort文件排序原理详解 单路排序模式: 双路排序(又叫回表排序模式) 分页优化 常规的limit分页 优化 根据主键排序 非主键排序的优化 表关联优化 常见的表关联算法 内嵌循环连接算法 基于块

  • 深入解析MySQL索引的原理与优化策略

    目录 索引的概念 索引的原理 索引的类型 索引的使用 索引的使用方式 注意事项 索引优化技巧 索引的概念 MySQL索引是一种用于加速数据库查询的数据结构,它类似于书籍的目录,能够快速指导我们找到需要的信息.MySQL索引可以根据一定的算法和数据结构进行排序和存储,从而实现高效的数据查找和访问.在数据库中,索引可以加速数据的查询和更新操作,提高系统性能. MySQL支持多种索引类型,常见的包括B-tree索引.哈希索引和全文索引等.其中,B-tree索引是最常用的一种,它是一种平衡树结构,可以将

  • Mysql性能优化案例研究-覆盖索引和SQL_NO_CACHE

    场景 产品中有一张图片表pics,数据量将近100万条,有一条相关的查询语句,由于执行频次较高,想针对此语句进行优化 表结构很简单,主要字段: 复制代码 代码如下: user_id 用户ID picname 图片名称 smallimg 小图名称 一个用户会有多条图片记录,现在有一个根据user_id建立的索引:uid,查询语句也很简单:取得某用户的图片集合: 复制代码 代码如下: select picname, smallimg from pics where user_id = xxx; 优化

  • mysql关联子查询的一种优化方法分析

    本文实例讲述了mysql关联子查询的一种优化方法.分享给大家供大家参考,具体如下: 很多时候,在mysql上实现的子查询的性能较差,这听起来实在有点难过.特别有时候,用到IN()子查询语句时,对于上了某种数量级的表来说,耗时多的难以估计.本人mysql知识所涉不深,只能慢慢摸透个中玄机了. 假设有这样的一个exists查询语句: select * from table1 where exists (select * from table2 where id>=30000 and table1.u

  • PHP实现将MySQL重复ID二维数组重组为三维数组的方法

    本文实例讲述了PHP实现将MySQL重复ID二维数组重组为三维数组的方法.分享给大家供大家参考,具体如下: 应用场景 MYSQL在使用关联查询时,比如 产品表 与 产品图片表关联,一个产品多张产品图片,关联查询结果如下: $arr=[ ['id'=>1,'img'=>'img1'], ['id'=>1,'img'=>'img2'], ['id'=>1,'img'=>'img3'], ['id'=>2,'img'=>'img1'], ['id'=>2,'

  • MySQL 死锁套路:唯一索引 S 锁与 X 锁的爱恨情仇

    在初学者从源码理解MySQL死锁问题中介绍了使用调试 MySQL  源码的方式来查看死锁的过程,这篇文章来讲讲一个常见的案例. 毫不夸张的说,有一半以上的死锁问题由唯一索引贡献,后面介绍的很多死锁的问题都跟唯一索引有关.这次我们讲一段唯一索引 S 锁与 X 锁的爱恨情仇 我们来看一个简化过的例子 # 构造数据 CREATE TABLE `t1` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(10), `level` int(11),

  • MySQL如何选择合适的索引

    先来看一个栗子 EXPLAIN select * from employees where name > 'a'; 如果用name索引查找数据需要遍历name字段联合索引树,然后根据遍历出来的主键值去主键索引树里再去查出最终数据,成本比全表扫描还高. 可以用覆盖索引优化,这样只需要遍历name字段的联合索引树就可以拿到所有的结果. EXPLAIN select name,age,position from employees where name > 'a'; 可以看到通过select出的字段

  • MySql 知识点之事务、索引、锁原理与用法解析

    本文实例讲述了MySql 知识点之事务.索引.锁原理与用法.分享给大家供大家参考,具体如下: 事务 事务概念 事务就是一组原子性的SQL查询,或者说一个独立的工作单元.如果数据库引擎执行一组操作语句,那么久执行所有的操作,如果其中有任何一条崩溃或其他原因无法执行,所有语句将不会执行.也就是说事务内的语句,要么全部执行成功,要么全部执行失败. 事务特性ACID 原子性(atomicity) 一个事务被视为最小工作单元,不可拆分,整个事务所有的操作要么全部提交成功,要么全部失败回滚,不可只执行部分.

随机推荐