Linux内核设备驱动之系统调用笔记整理

/****************************
 * 系统调用
 ****************************/

(1)什么是系统调用

系统调用是内核和应用程序间的接口,应用程序要访问硬件设备和其他操作系统资源,必须通过系统调用来完成。

在linux中,系统调用是用户空间访问内核的唯一手段,除异常和中断外,他们是内核唯一的合法入口。系统调用的数量很少,在i386上只有大概300个左右。

(2)c库和系统调用的关系

应用程序员通过C库中的应用程序接口(API)而不是直接通过系统调用来编程。C库中的函数可以不调用系统调用,也可以只是简单封装一个系统调用,还可以通过调用多个系统调用来实现一个功能。

应用程序-->C库-->内核的系统调用

从程序员的角度来看,系统调用无关紧要,他们只需要跟API打交道就可以了;

从内核的角度来看,内核只跟系统调用打交道,库函数及应用程序怎么使用系统调用不是内核所关心的。

unix的系统调用抽象出了用于完成某种特定目的的函数,而怎么使用这些函数则是用户的事情,内核并不关心。

(3)在内核中实现的系统调用函数

在用户空间中使用系统调用例子

#include <unistd.h>
getpid();

经过glibc库的封装,最终会调用内核中kernel/timer.c中的函数sys_getpid。见该函数。内核中所有的系统调用函数都用sys_开头。

  • asmlinkage  通知编译器,使用局部堆栈来传递参数
  • FASTCALL宏  通知编译器,使用寄存器来传递参数

(4)系统调用号

因为系统调用要从用户空间进入内核空间,所以不可能通过简单的函数调用完成,必须通过一些处理器支持的特殊机制(所谓的软中断)。

在x86上,这一特殊机制就是汇编指令int $0x80, 而在arm上,就是汇编指令SWI。

这条指令被封装到C库中的函数里,当程序执行到这一条指令后,cpu会进入一个特殊的异常模式(或软中断模式),并将程序指针跳转到特点的位置(如arm为中断向量表的0x8处)。

内核中实现了很多的系统调用,这些系统调用的地址被按顺序放在一个系统调用表中,这个表是一个名为sys_call_table的数组,共有NR_syscalls个表项。通过这个表,就可以调用到内核定义的所以sys_函数

调用汇编指令int $0x80 或SWI 时,要同时传递一个系统调用号,这个系统调用号将作为索引,从sys_call_table中选择对应的系统调用。

int80将系统调用号保存在eax寄存器中,而SWI将其直接集成在指令中(如SWI 0x124)。

(5)系统调用的实现机制

内核中处理系统调用的函数定义在arch/i386/kernel/entry.s中的system_call,而arm系统在arch/arm/kernel/entry-common.s中的vector_swi。x86系统的系统调用表定义在arch/i386/kernel/syscall_table.s(或直接定义在entry.s)中,而arm定义在arch/arm/kernel/calls.s中系统调用号定义在include/asm/unistd.h中

(6)要实现系统调用需注意哪些方面

给linux添加一个系统调用不难,但怎么设计和实现一个系统调用是难题所在。linux不提倡采用多用途的系统调用(根据不同的参数提供不同的功能)。

系统调用必须仔细检查传入参数的有效性,尤其是用户提供的指针,必须确保:

  • *指针指向的内存区域属于用户空间,进程不能哄骗内核去读内核空间的数据
  • *指针指向的内存区域属于进程的地址空间,不能哄骗内核去读其他进程的数据
  • *进程不能绕过内存访问权限。

内核在执行系统调用的时候处于进程上下文,可以休眠,也可以被抢占,所以必须保证系统调用是可重入的。

(7)一个系统调用的例子(包括内核的修改和用户空间程序的实现)

实现一个系统调用sys_foo

a.添加系统调用号

修改include/asm/unistd.h,加入:#define __NR_foo 289   并修改:#define NR_syscalls 290

b.在系统调用表中添加

修改arch/i386/kernel/entry.s或syscall_table.s,加入:

.long sys_foo

c.系统调用必须编译到核心的内核映像中,可以将系统调用的定义放置到和其功能联系最紧密的代码中,如kernel/sys.c,加入:

#include <asm/thread_info.h>
/*
 * return the size of kernel stack
 */
asmlinkage long sys_foo(void)
{
 return THREAD_SIZE;
}

d.在用户空间进行调用

通常,系统调用靠c库支持,glibc不可能支持我们自己的系统调用,此时,需要借助linux本身提供的一组宏来对系统调用直接进行访问。

man 2 syscall

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • Linux内核设备驱动之高级字符设备驱动笔记整理

    /****************** * 高级字符设备驱动 ******************/ (1)ioctl 除了读取和写入设备外,大部分驱动程序还需要另外一种能力,即通过设备驱动程序执行各种类型的硬件控制.比如弹出介质,改变波特率等等.这些操作通过ioctl方法支持,该方法实现了同名的系统调用. 在用户空间,ioctl系统调用的原型是: int ioctl(int fd, unsigned long cmd, ...); fd: 打开的设备文件描述符 cmd: 命令 第三个参数:根据

  • 移植新内核到Linux系统上的操作步骤

    1.在ubuntu官网下载ubuntu16.04的镜像和对应ubuntu16.04的内核版本源代码,或者在镜像源上找 2.安装ubuntu16.04到PC主机上 接下来执行以下: 编译新的Linux内核给X86内核使用出现以下错误: scripts/sign-file.c:25:30: fatal error: openssl/opensslv.h: No such file or directory 解决方法: (1)下载openssl-1.0.1d.tar.gz tar xzf openss

  • 将Linux代码移植到Windows的简单方法

    一.前言 Linux拥有丰富各种源代码资源,但是大部分代码在Windows平台情况是无法正常编译的.Windows平台根本无法直接利用这些源代码资源.如果想要使用完整的代码,就要做移植工作.因为C/C++ Library的不同和其他的一些原因,移植C/C++代码是一项困难的工作.本文将以一个实际的例子(Tar)来说明如何把Linux代码移植到Windows平台上.移植过程将尽量少修改代码,以便代码的运行逻辑不会发生任何变动.保留绝大部分软件主要功能. 二.准备工作 Tar是Linux平台下面一个

  • Linux内核设备驱动之虚拟文件系统笔记整理

    /******************** * 虚拟文件系统VFS ********************/ (1)VFS介绍 虚拟文件系统VFS作为内核的子系统,为用户空间程序提供了文件系统的相关接口. VFS使得用户可以直接使用open()等系统调用而无需考虑具体文件系统和实际物理介质. VFS提供了一个通用的文件系统模型,该模型囊括了我们所能想到的文件系统的常用功能和行为.通过这个抽象层,就可以实现利用通用接口对所有类新的文件系统进行操作. a.调用模型 write(): 用户空间 --

  • Linux内核设备驱动地址映射笔记整理

    #include <asm/io.h> #define ioremap(cookie,size) __arm_ioremap(cookie, size, MT_DEVICE) //cookie表示物理地址, size表示映射大小. ioremap把指定的物理地址映射到空闲的虚拟地址 void __iomem * __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype) { return __arm_iorem

  • Linux内核设备驱动之proc文件系统笔记整理

    /***************** * proc文件系统 *****************/ (1)/proc文件系统的特点和/proc文件的说明 /proc文件系统是一种特殊的.由软件创建的文件系统,内核使用它向外界导出信息,/proc系统只存在内存当中,而不占用外存空间. /proc下面的每个文件都绑定于一个内核函数,用户读取文件时,该函数动态地生成文件的内容.也可以通过写/proc文件修改内核参数 /proc目录下的文件分析  /proc/$pid 关于进程$pid的信息目录.每个进程

  • Linux内核设备驱动之Linux内核基础笔记整理

    1. Linux内核驱动模块机制 静态加载, 把驱动模块编进内核, 在内核启动时加载 动态加载, 把驱动模块编为ko, 在内核启动后,需要用时加载 2. 编写内核驱动 #include <linux/module.h> #include <linux/init.h> static int __init test_init(void) { return 0; //返回0表示成功, 返加负数退出加载模块 } //__init 当内核把驱动初始化完后, 释放此函数的代码指令空间 stat

  • Linux内核设备驱动之字符设备驱动笔记整理

    /******************** * 字符设备驱动 ********************/ (1)字符设备驱动介绍 字符设备是指那些按字节流访问的设备,针对字符设备的驱动称为字符设备驱动. 此类驱动适合于大多数简单的硬件设备.比如并口打印机,我们通过在/dev下建立一个设备文件(如/dev/printer)来访问它. 用户应用程序用标准的open函数打开dev/printer,然后用write向文件中写入数据,用read从里面读数据. 调用流程: write(): 用户空间 -->

  • Linux内核设备驱动之内存管理笔记整理

    /********************** * linux的内存管理 **********************/ 到目前为止,内存管理是unix内核中最复杂的活动.我们简单介绍一下内存管理,并通过实例说明如何在内核态获得内存. (1)各种地址 对于x86处理器,需要区分以下三种地址: *逻辑地址(logical address) 只有x86支持.每个逻辑地址都由一个段(segment)和一个偏移量(offset)组成,偏移量指明了从段的开始到实际地址之间的距离. 逻辑地址共48位,段选择

  • Linux内核设备驱动之内核的时间管理笔记整理

    /****************** * linux内核的时间管理 ******************/ (1)内核中的时间概念 时间管理在linux内核中占有非常重要的作用. 相对于事件驱动而言,内核中有大量函数是基于时间驱动的. 有些函数是周期执行的,比如每10毫秒刷新一次屏幕: 有些函数是推后一定时间执行的,比如内核在500毫秒后执行某项任务. 要区分: *绝对时间和相对时间 *周期性产生的事件和推迟执行的事件 周期性事件是由系统系统定时器驱动的 (2)HZ值 内核必须在硬件定时器的帮

  • Linux内核设备驱动之内核的调试技术笔记整理

    /****************** * 内核的调试技术 ******************/ (1)内核源代码中的一些与调试相关的配置选项 内核的配置选项中包含了一些与内核调试相关的选项,都集中在"kernel hacking"菜单中.包括: CONFIG_DEBUG_KERNEL 使其他的调试选项可用,应该选中,其本身不会打开所有的调试功能. 具体的调试选项说明可参见驱动一书,或通过menuconfig的help说明查看. (2)如何通过宏对printk调试语句进行全局控制 通

  • Linux内核设备驱动之内核中链表的使用笔记整理

    /******************** * 内核中链表的应用 ********************/ (1)介绍 在Linux内核中使用了大量的链表结构来组织数据,包括设备列表以及各种功能模块中的数据组织.这些链表大多采用在include/linux/list.h实现的一个相当精彩的链表数据结构. 链表数据结构的定义很简单: struct list_head { struct list_head *next, *prev; }; list_head结构包含两个指向list_head结构的

  • Linux内核设备驱动之Linux内核模块加载机制笔记整理

    #include <linux/moduleparam.h> 1. 模块参数 在驱动定义变量 static int num = 0; //当加载模块不指定num的值时则为0 module_param(变量名, 类型, 权限);类型: byte, int, uint, short, ushort, long, ulong, bool, charp,权限不能有写的权限 传参数: insmod test.ko 变量名1=值1  变量名2=值2 module_param的调用关系如下: #define

随机推荐