Pandas 合并多个Dataframe(merge,concat)的方法

在数据处理的时候,尤其在搞大数据竞赛的时候经常会遇到一个问题就是,多个表单的合并问题,比如一个表单有user_id和age这两个字段,另一个表单有user_id和sex这两个字段,要把这两个表合并成只有user_id、age、sex三个字段的表怎么办的,普通的拼接是做不到的,因为user_id每一行之间不是对应的,像拼积木似的横向拼接肯定是不行的。

pandas中有个merge函数可以做到这个实用的功能,merge这个词会点SQL语言的应该都不陌生。

下面说说merge函数怎么用:

df = pd.merge(df1, df2, how='left', on='user_id') 

用法很简单,说一下后两个参数就可以了,how=""参数表示以哪个表的key为准,上面的how="left"表示以表df1为准,而key也就是on=""的参数

how="left"就是说,保留user_id字段的全部信息,不增加也不减少,但是拼接的时候只把df2表中的与df1中user_id字段交集的部分合并上就可以了,如果df2中出现了某个user_id在df1中没有出现,就抛弃掉这个样本不作处理。

如果要进行多key合并:

df = pd.merge(df1, df2, how='left', on=['user_id','sku_id']) 

但是如果想仅进行简单的“拼接”而不是合并呢,要使用concat函数:

df = pd.concat( [df_user, dummies_sex, dummies_age, dummies_level], axis=1 ) 

这样可以保留这些表单的全部信息,参数axis=1表示列拼接,axis=0表示行拼接。

要保证背个表单的行数是相同的,并且每一行对应的key也是相同的,列拼接才变得有意义

以上这篇Pandas 合并多个Dataframe(merge,concat)的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pandas表连接 索引上的合并方法

    如下所示: left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value':range(6)}) right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b']) print(left1) print(right1) result = pd.merge(left1,right1,left_on='key',right_index=True) print(result) 层次化数

  • Pandas 按索引合并数据集的方法

    如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.merge函数 left1 = DataFrame({'水果':['苹果','梨','草莓'], '价格':[3,4,5], '数量':[9,8,7]}).set_index('水果') right1 = DataFrame({'水果':['苹果','草莓'], '产地':['美国','中国']}) print(left1) pri

  • 使用pandas对两个dataframe进行join的实例

    需求: 两个文件,一个文件为统计报表,里面含有手机号,另一个文件为手机号段归属地,含有手机号码前七位对应的地区.需要对统计报表进行处理,将手机号所在的归属地加入到统计报表中,使用pandas提供的join功能来实现,代码如下: #coding=utf-8 from pandas import Series,DataFrame import pandas as pd #reader1 = pd.read_csv('Dm_Mobile.txt',iterator=True,encoding="gb2

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

  • 在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

    最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

  • python pandas中对Series数据进行轴向连接的实例

    有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现.操作的对象通常是Series. Ipython中的交互代码如下: In [17]: from pandas import Series,DataFrame In [18]: series1 = Series(range(2),index = ['a','b']) In [19]: series2 = Series(range(3),index = ['c','d','e']) In [20]: serie

  • pandas DataFrame实现几列数据合并成为新的一列方法

    问题描述 我有一个用于模型训练的DataFrame如下图所示: 其中的country.province.city.county四列其实是位置信息的不同层级,应该合成一列用于模型训练 方法: parent_teacher_data['address'] = parent_teacher_data['country']+parent_teacher_data['province']+parent_teacher_data['city']+parent_teacher_data['county'] 就

  • python merge、concat合并数据集的实例讲解

    数据规整化:合并.清理.过滤 pandas和python标准库提供了一整套高级.灵活的.高效的核心函数和算法将数据规整化为你想要的形式! 本篇博客主要介绍: 合并数据集:.merge()..concat()等方法,类似于SQL或其他关系型数据库的连接操作. 合并数据集 1) merge 函数参数 参数 说明 left 参与合并的左侧DataFrame right 参与合并的右侧DataFrame how 连接方式:'inner'(默认):还有,'outer'.'left'.'right' on

  • Pandas 合并多个Dataframe(merge,concat)的方法

    在数据处理的时候,尤其在搞大数据竞赛的时候经常会遇到一个问题就是,多个表单的合并问题,比如一个表单有user_id和age这两个字段,另一个表单有user_id和sex这两个字段,要把这两个表合并成只有user_id.age.sex三个字段的表怎么办的,普通的拼接是做不到的,因为user_id每一行之间不是对应的,像拼积木似的横向拼接肯定是不行的. pandas中有个merge函数可以做到这个实用的功能,merge这个词会点SQL语言的应该都不陌生. 下面说说merge函数怎么用: df = p

  • pandas dataframe的合并实现(append, merge, concat)

    创建2个DataFrame: >>> df1 = pd.DataFrame(np.ones((4, 4))*1, columns=list('DCBA'), index=list('4321')) >>> df2 = pd.DataFrame(np.ones((4, 4))*2, columns=list('FEDC'), index=list('6543')) >>> df3 = pd.DataFrame(np.ones((4, 4))*3, col

  • 利用pandas合并多个excel的方法示例

    具体方法: 1使用panda read_excel 方法加载excel 2使用concat将DataFrame列表进行拼接 3然后使用pd.ExcelWriter对象和to_excel将合并后的DataFrame保存成excel 方法很简单很使用,下面是代码和excel图片 参考文档pandas.DataFrame.to_excel import pandas as pd file1='C:/Users/Administrator/Desktop/00/1.xlsx' file2='C:/Use

  • 详解pandas数据合并与重塑(pd.concat篇)

    1 concat concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False) 参数说明 objs: series,dataframe或者是panel构成的序列lsit axis: 需要合并链接的轴,0是行,1是列

  • Pandas中两个dataframe的交集和差集的示例代码

    创建测试数据: import pandas as pd import numpy as np #Create a DataFrame df1 = { 'Subject':['semester1','semester2','semester3','semester4','semester1', 'semester2','semester3'], 'Score':[62,47,55,74,31,77,85]} df2 = { 'Subject':['semester1','semester2','s

  • Pandas自定义shift与DataFrame求差集的小技巧

    目录 Pandas的高级shift偏移 Datafream对象求差集 总结 大家好,我是小小明.今天分享两个小技巧: Pandas的高级shift偏移 有很多玩量化的朋友经常碰到类似这样的问题: 其中有位量化大佬居然在半年后的今天又问了我一遍怎么实现这样的效果,他居然忘了我之前给他写过实现.为了避免有人再碰到类似的问题,特别写下此文. 我们知道Pandas默认的API是不支持这样的操作的,这个只能自己想办法实现.下面我借助数值索引实现这样的功能,并封装起来. 最终我们封装的方法如下: impor

  • 详解利用Pandas求解两个DataFrame的差集,交集,并集

    目录 模拟数据 差集 方法1:concat + drop_duplicates 方法2:append + drop_duplicates 交集 方法1:merge 方法2:concat + duplicated + loc 方法3:concat + groupby + query 并集 方法1:concat + drop_duplicates 方法2:append + drop_duplicates 方法3:merge 大家好,我是Peter~ 本文讲解的是如何利用Pandas函数求解两个Dat

  • 利用Pandas求两个dataframe差集的过程详解

    目录 1.交集 2.差集(df1-df2为例) 总结 1.交集 intersected=pd.merge(df1,df2,how='inner') 延伸(针对列求交集)intersected=pd.merge(df1,df2,on['name'],how='inner') 2.差集(df1-df2为例) diff=pd.concat([df1,df2,df2]).drop_duplicates(keep=False) 差集函数的详解: 1.Pandas 通过 concat() 函数能够轻松地将

  • python:pandas合并csv文件的方法(图书数据集成)

    数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---

随机推荐