通过实例学习MySQL分区表原理及常用操作
1、分区表含义
分区表定义指根据可以设置为任意大小的规则,跨文件系统分配单个表的多个部分。实际上,表的不同部分在不同的位置被存储为单独的表。用户所选择的、实现数据分割的规则被称为分区函数,这在MySQL中它可以是模数,或者是简单的匹配一个连续的数值区间或数值列表,或者是一个内部HASH函数,或一个线性HASH函数。
分表与分区的区别在于:分区从逻辑上来讲只有一张表,而分表则是将一张表分解成多张表
2、分区表优点
1)分区表更容易维护。对于那些已经失去保存意义的数据,通常可以通过删除与那些数据有关的分区,很容易地删除那些数据。相反地,在某些情况下,添加新数据的过程又可以通过为那些新数据专门增加一个新的分区,来很方便地实现。
2)一些查询可以得到极大的优化,这主要是借助于满足一个给定WHERE语句的数据可以只保存在一个或多个分区内,这样在查找时就不用查找其他剩余的分区。因为分区可以在创建了分区表后进行修改,所以在第一次配置分区方案时还不曾这么做时,可以重新组织数据,来提高那些常用查询的效率。
3)优化查询。涉及到例如SUM()和COUNT(),可以在多个分区上并行处理,最终结果只需通过总计所有分区得到的结果。
4)通过跨多个磁盘来分散数据查询,来获得更大的查询吞吐量。
3、分区表限制
1)一个表最多只能有1024个分区;
2) MySQL5.1中,分区表达式必须是整数,或者返回整数的表达式。在MySQL5.5中提供了非整数表达式分区的支持;
3)如果分区字段中有主键或者唯一索引的列,那么多有主键列和唯一索引列都必须包含进来。即:分区字段要么不包含主键或者索引列,要么包含全部主键和索引列;
4)分区表中无法使用外键约束;
5)MySQL的分区适用于一个表的所有数据和索引,不能只对表数据分区而不对索引分区,也不能只对索引分区而不对表分区,也不能只对表的一部分数据分区。
6)分区键必须是INT类型,或者通过表达式返回INT类型,可以为NULL。唯一的例外是当分区类型为KEY分区的时候,可以使用其他类型的列作为分区键(BLOB or TEXT 列除外)
7)如果表中有主键和唯一索引,按主键字段进行分区时,唯一索引列应该包含分区键。
8)目前mysql不支持空间类型和临时表类型进行分区。不支持全文索引。
9)对象限制(分区表达式不能出现Stored functions, stored procedures, UDFs, orplugins,Declared variables or user variables.)
10)运算限制(支持加减乘等运算出现在分区表达式,但是运算后的结果必须是一个INT或者NULL。支持DIV,不支持/,|, &, ^, <<, >>, and ~ 不允许出现在分区表达式中)
11)sql_mode限制(官方强烈建议你在创建分区表后,永远别改变mysql的sql_mode。因为在不同的模式下,某些函数或者运算返回的结果可能会不一样)
12)不支持query_cache和INSERT DELAYED
13)分区键不能是一个子查询(即使是子查询返回的是int值或者null.)
14)子分区限制(只有RANG和LIST分区能进行子分区。HASH和KEY分区不能进行子分区并且子分区必须是HASH 或 KEY类型)
4、分区类型
1)水平分区(根据列属性按行分)
如:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。
水平分区的几种模式:
* Range(范围):这种模式允许DBA将数据划分不同范围。
如:可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。
* Hash(哈希):这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区。
如:可以建立一个对表主键进行分区的表。
* Key(键值):上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。
* List(预定义列表):这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。
* Columns分区是对range,list分区的补充,弥补了后两者只支持整型数分区(或者通过转换为整型数),使得支持数据类型增加很多(所有整数类型,日期时间类型,字符类型),还支持多列分区。
注:在多列分区表上插入数据时,采用元组的比较,即多列排序,先根据field1排序,再根据field2排序,根据排序结果来来分区存储数据。
* Composite(复合模式):以上模式的组合使用。
如:在初始化已经进行了Range范围分区的表上,可以对其中一个分区再进行hash哈希分区。
垂直分区(按列分):
如:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,可以把这些不经常使用的text和BLOB划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。
注意:子分区(关键字subparttition):使用RANGE或LIST分区可以再次分割形成子分区,子分区可以是HASH分区或者KEY分区。建议在多磁盘上使用。
查看是否有支持Partition分区表
mysql> SHOW PLUGINS ; +----------------------------+----------+--------------------+---------+---------+ | Name | Status | Type | Library | License | +----------------------------+----------+--------------------+---------+---------+ | partition | ACTIVE | STORAGE ENGINE | NULL | GPL | +----------------------------+----------+--------------------+---------+---------+ 或使用 mysql> SELECT PLUGIN_NAME as Name, PLUGIN_VERSION as Version, PLUGIN_STATUS as Status -> FROM INFORMATION_SCHEMA.PLUGINS -> WHERE PLUGIN_TYPE='STORAGE ENGINE';
注意:MySQL 5.6.1 之前的版本,可以下命令查看 have_partitioning 参数,新的版本已移除该参数。
mysql> SHOW VARIABLES LIKE '%partition%';
5、实战常用分区表几种模式
1)使用RANGE分区模式
####创建测试表t1,并插入接近400万行数据,再没有分区的情况下,对查询某一条件耗时
mysql> CREATE TABLE `t1` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '表主键', `pid` int(10) unsigned NOT NULL COMMENT '产品ID', `price` decimal(15,2) NOT NULL COMMENT '单价', `num` int(11) NOT NULL COMMENT '购买数量', `uid` int(10) unsigned NOT NULL COMMENT '客户ID', `atime` datetime NOT NULL COMMENT '下单时间', `utime` int(10) unsigned NOT NULL DEFAULT 0 COMMENT '修改时间', `isdel` tinyint(4) NOT NULL DEFAULT '0' COMMENT '软删除标识', PRIMARY KEY (`id`,`atime`) ) INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,CURRENT_TIMESTAMP()); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,'2016-05-01 00:00:00'); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,'2017-05-01 00:00:00'); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,'2018-05-01 00:00:00'); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2015-05-01 00:00:00'); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2016-05-01 00:00:00'); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2017-05-01 00:00:00'); INSERT INTO t1(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2018-05-01 00:00:00'); /**********************************主从复制大量数据******************************/ mysql> INSERT INTO `t1`(`pid`,`price`,`num`,`uid`,`atime`) SELECT `pid`,`price`,`num`,`uid`,`atime` FROM `t1`; mysql> SELECT * FROM `t1` WHERE `uid`=89757 AND `atime`< CURRENT_TIMESTAMP(); 1048576 rows in set (5.62 sec) #没有分区表情况耗时5.62s
如果是针对已有的表进行表分区,可以使用ALTER TABLE来进行更改表为分区表,这个操作会创建一个分区表,然后自动进行数据copy然后删除原表。
注: 这种会使服务器资源消耗比较大(400多万数据要1分多钟)
mysql> ALTER TABLE t1 PARTITION BY RANGE (YEAR(atime)) -> ( -> PARTITION p0 VALUES LESS THAN (2016), -> PARTITION p1 VALUES LESS THAN (2017), -> PARTITION p2 VALUES LESS THAN (2018), -> PARTITION p3 VALUES LESS THAN MAXVALUE ); Query OK, 4194304 rows affected (1 min 8.32 sec) mysql> EXPLAIN PARTITIONS SELECT * FROM `t1`; #查看分区情况 +----+-------------+-------+-------------+------+---------------+------+---------+------+---------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+-------------+------+---------------+------+---------+------+---------+----------+-------+ | 1 | SIMPLE | t1 | p0,p1,p2,p3 | ALL | NULL | NULL | NULL | NULL | 4180974 | 100.00 | NULL | +----+-------------+-------+-------------+------+---------------+------+---------+------+---------+----------+-------+ 1 row in set, 2 warnings (0.00 sec)
同样用上面的查询测试结果
mysql> SELECT * FROM `t1` WHERE `uid`=89757 AND `atime`< CURRENT_TIMESTAMP(); 1048576 rows in set (4.46 sec) #与上面没有分区查询执行的时间相比少了接近1s mysql> EXPLAIN PARTITIONS SELECT * FROM `t1` WHERE `uid`=89757 AND `atime`< CURRENT_TIMESTAMP(); #查看查询使用的分区情况 +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+ | 1 | SIMPLE | t1 | p0,p1,p2 | ALL | NULL | NULL | NULL | NULL | 3135804 | 3.33 | Using where | +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+ 1 row in set, 2 warnings (0.00 sec)
同时也要注意,进行表分区以后,mysql存放的数据文件夹中该表的存放文件也被拆分为多个
-rw-r----- 1 mysql mysql 8.7K 2月 14 14:49 t1.frm -rw-r----- 1 mysql mysql 36M 2月 14 14:50 t1#P#p0.ibd -rw-r----- 1 mysql mysql 64M 2月 14 14:50 t1#P#p1.ibd -rw-r----- 1 mysql mysql 92M 2月 14 14:50 t1#P#p2.ibd -rw-r----- 1 mysql mysql 64M 2月 14 14:50 t1#P#p3.ibd
实际生产环境中,大多是采用另外一种方式:新建一个和原来表一样的分区表,然后把数据从原表导出,接着导入新表,最后建立普通索引。
mysql> CREATE TABLE `t2` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '表主键', `pid` int(10) unsigned NOT NULL COMMENT '产品ID', `price` decimal(15,2) NOT NULL COMMENT '单价', `num` int(11) NOT NULL COMMENT '购买数量', `uid` int(10) unsigned NOT NULL COMMENT '客户ID', `atime` datetime NOT NULL COMMENT '下单时间', `utime` int(10) unsigned NOT NULL DEFAULT 0 COMMENT '修改时间', `isdel` tinyint(4) NOT NULL DEFAULT '0' COMMENT '软删除标识', PRIMARY KEY (`id`,`atime`) ) PARTITION BY RANGE COLUMNS(atime) ( PARTITION p0 VALUES LESS THAN ('2016-01-01'), PARTITION p1 VALUES LESS THAN ('2016-02-01'), PARTITION p2 VALUES LESS THAN ('2016-03-01'), PARTITION p3 VALUES LESS THAN ('2016-04-01'), PARTITION p4 VALUES LESS THAN ('2016-05-01'), PARTITION p5 VALUES LESS THAN ('2016-06-01'), PARTITION p6 VALUES LESS THAN ('2016-07-01'), PARTITION p7 VALUES LESS THAN ('2016-08-01'), PARTITION p8 VALUES LESS THAN ('2016-09-01'), PARTITION p9 VALUES LESS THAN ('2016-10-01'), PARTITION p10 VALUES LESS THAN ('2016-11-01'), PARTITION p11 VALUES LESS THAN ('2016-12-01'), PARTITION p12 VALUES LESS THAN ('2017-01-01'), PARTITION p13 VALUES LESS THAN ('2017-02-01'), PARTITION p14 VALUES LESS THAN ('2017-03-01'), PARTITION p15 VALUES LESS THAN ('2017-04-01'), PARTITION p16 VALUES LESS THAN ('2017-05-01'), PARTITION p17 VALUES LESS THAN ('2017-06-01'), PARTITION p18 VALUES LESS THAN ('2017-07-01'), PARTITION p19 VALUES LESS THAN ('2017-08-01'), PARTITION p20 VALUES LESS THAN ('2017-09-01'), PARTITION p21 VALUES LESS THAN ('2017-10-01'), PARTITION p22 VALUES LESS THAN ('2017-11-01'), PARTITION p23 VALUES LESS THAN ('2017-12-01'), PARTITION p24 VALUES LESS THAN ('2018-01-01'), PARTITION p25 VALUES LESS THAN ('2018-02-01'), PARTITION p26 VALUES LESS THAN ('2018-03-01'), PARTITION p27 VALUES LESS THAN ('2018-04-01'), PARTITION p28 VALUES LESS THAN ('2018-05-01'), PARTITION p29 VALUES LESS THAN ('2018-06-01'), PARTITION p30 VALUES LESS THAN ('2018-07-01'), PARTITION p31 VALUES LESS THAN ('2018-08-01'), PARTITION p32 VALUES LESS THAN ('2018-09-01'), PARTITION p33 VALUES LESS THAN ('2018-10-01'), PARTITION p34 VALUES LESS THAN ('2018-11-01'), PARTITION p35 VALUES LESS THAN ('2018-12-01'), PARTITION p36 VALUES LESS THAN MAXVALUE );
注:表主键只有id,而分区字段是atime, 这里主键要修改为 id,stsdate 联合主键,分区表要求分区字段要是主键或者是主键的一部分!!!
mysql> EXPLAIN PARTITIONS SELECT * FROM `t2`\G; *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t2 partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36 type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 2 warnings (0.00 sec) *******************************************插入数据************************************************* INSERT INTO `t2`(`pid`,`price`,`num`,`uid`,`atime`) SELECT `pid`,`price`,`num`,`uid`,`atime` FROM `t1`; Query OK, 4194304 rows affected (1 min 18.54 sec) Records: 4194304 Duplicates: 0 Warnings: 0
或采用导出数据再导入数据,可再添加索引
mysqldump -u dbname -p --no-create-info dbname t2 > t2.sq
修改表名,导入数据,测试下ok,删除原来的表。
2)使用LIST分区模式(如果原表存在主键强烈创建新表时,把原主键和要分区字段作为联合主键一并创建)
mysql> CREATE TABLE `tb01` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '表主键', `pid` int(10) unsigned NOT NULL COMMENT '产品ID', `price` decimal(15,2) NOT NULL COMMENT '单价', `num` int(11) NOT NULL COMMENT '购买数量', `uid` int(10) unsigned NOT NULL COMMENT '客户ID', `atime` datetime NOT NULL COMMENT '下单时间', `utime` int(10) unsigned NOT NULL DEFAULT 0 COMMENT '修改时间', `isdel` tinyint(4) NOT NULL DEFAULT '0' COMMENT '软删除标识', PRIMARY KEY (`id`,`num`) ); *****************************插入测试数据****************************************************** INSERT INTO `tb01`(`pid`,`price`,`num`,`uid`,`atime`) SELECT `pid`,`price`,`num`,`uid`,`atime` FROM `tb`; Query OK, 3145728 rows affected (46.26 sec) Records: 3145728 Duplicates: 0 Warnings: 0 mysql> ALTER TABLE tb01 PARTITION BY LIST(num) ( PARTITION pl01 VALUES IN (1,3), PARTITION pl02 VALUES IN (2,4), PARTITION pl03 VALUES IN (5,7), PARTITION pl04 VALUES IN (6,8), PARTITION pl05 VALUES IN (9,10) ); Query OK, 3145728 rows affected (48.86 sec) Records: 3145728 Duplicates: 0 Warnings: 0 存放mysql数据文件中生成,以下文件 -rw-r----- 1 mysql mysql 8.7K 2月 15 11:35 tb01.frm -rw-r----- 1 mysql mysql 56M 2月 15 11:36 tb01#P#pl01.ibd -rw-r----- 1 mysql mysql 32M 2月 15 11:36 tb01#P#pl02.ibd -rw-r----- 1 mysql mysql 36M 2月 15 11:36 tb01#P#pl03.ibd -rw-r----- 1 mysql mysql 36M 2月 15 11:36 tb01#P#pl04.ibd -rw-r----- 1 mysql mysql 52M 2月 15 11:36 tb01#P#pl05.ibd
mysql> EXPLAIN PARTITIONS SELECT * FROM `tb01`; +----+-------------+-------+--------------------------+------+---------------+------+---------+------+---------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+--------------------------+------+---------------+------+---------+------+---------+----------+-------+ | 1 | SIMPLE | tb01 | pl01,pl02,pl03,pl04,pl05 | ALL | NULL | NULL | NULL | NULL | 3136392 | 100.00 | NULL | +----+-------------+-------+--------------------------+------+---------------+------+---------+------+---------+----------+-------+ 1 row in set, 2 warnings (0.00 sec)
3)COLUMNS分区
创建多列分区表tb02,这里两列都不是联合主键
mysql> CREATE TABLE tb02( -> a int not null, -> b int not null -> ) -> PARTITION BY RANGE COLUMNS(a,b)( -> partition p0 values less than(0,10), -> partition p1 values less than(10,20), -> partition p2 values less than(10,30), -> partition p3 values less than(maxvalue,maxvalue) -> ); mysql> EXPLAIN PARTITIONS SELECT * FROM `tb02`; #查看 +----+-------------+-------+-------------+------+---------------+------+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+-------------+------+---------------+------+---------+------+------+----------+-------+ | 1 | SIMPLE | tb02 | p0,p1,p2,p3 | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | NULL | +----+-------------+-------+-------------+------+---------------+------+---------+------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec) mysql> insert into tb02 values (11,13); #手工插入测试数据 Query OK, 1 row affected (0.01 sec) mysql> select PARTITION_NAME,PARTITION_EXPRESSION,TABLE_ROWS from information_schema.partitions where table_schema=schema() and table_name='tb02'; +----------------+----------------------+------------+ | PARTITION_NAME | PARTITION_EXPRESSION | TABLE_ROWS | +----------------+----------------------+------------+ | p0 | `a`,`b` | 0 | | p1 | `a`,`b` | 0 | | p2 | `a`,`b` | 0 | | p3 | `a`,`b` | 1 | +----------------+----------------------+------------+ 4 rows in set (0.03 sec)
4)Hase分区
HASH主要是为了让数据在设定个数的分区中尽可能分布平均,执行哈希分区时,mysql会对分区键执行哈希函数,以确定数据放在哪个分区中。HASH分区分为常规HASH分区和线性HASH分区,前者使用取模算法,后者使用线性2的幂的运算规则。
CREATE TABLE `tb03` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '表主键', `pid` int(10) unsigned NOT NULL COMMENT '产品ID', `price` decimal(15,2) NOT NULL COMMENT '单价', `num` int(11) NOT NULL COMMENT '购买数量', `uid` int(10) unsigned NOT NULL COMMENT '客户ID', `atime` datetime NOT NULL COMMENT '下单时间', `utime` int(10) unsigned NOT NULL DEFAULT 0 COMMENT '修改时间', `isdel` tinyint(4) NOT NULL DEFAULT '0' COMMENT '软删除标识', PRIMARY KEY (`id`) ) PARTITION BY HASH(id) partitions 4; 插入2行数据: INSERT INTO tb03(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,CURRENT_TIMESTAMP()); INSERT INTO tb03(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,CURRENT_TIMESTAMP()); mysql> explain partitions select * from tb03 where id=1; +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | 1 | SIMPLE | tb03 | p1 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec) mysql> explain partitions select * from tb03 where id=2; +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | 1 | SIMPLE | tb03 | p2 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec)
注意:HASH分区虽然尽可能让数据平均地分布在每个分区上,提高了查询效率,但增加了分区管理的代价,比如以前有5个分区,现在要加上一个分区,算法有mod(expr,5)变成(expr,6),原5个分区的数据大部分要重新计算重新分区。虽然使用线性HASH分区会降低分区管理的代价,但是数据却没有常规HASH分布得那么均匀。
5)KEY分区
KEY分区类似与HASH分区,但是不能自定义表达式,不过支持分区键的类型很多,除Text,Blob等文本类型。
CREATE TABLE `tb04` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '表主键', `pid` int(10) unsigned NOT NULL COMMENT '产品ID', `price` decimal(15,2) NOT NULL COMMENT '单价', `num` int(11) NOT NULL COMMENT '购买数量', `uid` int(10) unsigned NOT NULL COMMENT '客户ID', `atime` datetime NOT NULL COMMENT '下单时间', `utime` int(10) unsigned NOT NULL DEFAULT 0 COMMENT '修改时间', `isdel` tinyint(4) NOT NULL DEFAULT '0' COMMENT '软删除标识', PRIMARY KEY (`id`) ) PARTITION BY KEY(id) partitions 4; 插入2行数据: INSERT INTO tb04(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,CURRENT_TIMESTAMP()); INSERT INTO tb04(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,CURRENT_TIMESTAMP()); #用执行任务查看记录落在分区情况 mysql> explain partitions select * from tb04 where id=1; +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | 1 | SIMPLE | tb04 | p0 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec) mysql> explain partitions select * from tb04 where id=2; +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ | 1 | SIMPLE | tb04 | p3 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL | +----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec)
6)分区表管理
建议在生产环境中尽量不要修改分区,alter会读出存在旧表中的数据,再存入新定义的表中,过程IO将很大,而且全表都会锁住。
*1*删除分区:示例以上面tb01表
--未删除p05分区查询数据,主要验证当删除分区数据是否被删除
mysql> select count(1) from tb01 where num=10; +----------+ | count(1) | +----------+ | 524288 | +----------+ 1 row in set (0.37 sec) mysql> alter table tb01 drop partition pl05; #删除pl05分区,如:一次性删除多个分区,alter table tb01 drop partition pl04,pl05; Query OK, 0 rows affected (0.06 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(1) from tb01 where num=10; #结果数据也被删除,慎重操作 +----------+ | count(1) | +----------+ | 0 | +----------+ 1 row in set (0.01 sec)
注意:删除分区会删除数据,谨慎操作;不可以删除hash或者key分区。
*2*增加分区
注:新分区的值不能包含任意一个现有分区中值列表中的值,否则报错;新增分区会重新整理数据,原有数据不会丢失。有MAXVALUE值后,直接不能直接加分区,如示例以上面的t1表为例子。
mysql> ALTER TABLE t1 ADD PARTITION (PARTITION P4 VALUES LESS THAN (2018) ) ; ERROR 1481 (HY000): MAXVALUE can only be used in last partition definition 示例:把tb01上面删除的pl05分区添加 mysql> ALTER TABLE tb01 ADD PARTITION(PARTITION pl05 VALUES IN (9,10)); Query OK, 0 rows affected (0.05 sec) Records: 0 Duplicates: 0 Warnings: 0
*3*分解分区
注:Reorganize partition关键字可以对表的部分分区或全部分区进行修改,并且不会丢失数据。分解前后分区的整体范围应该一致。
示例:
mysql> create table tb05 -> (dep int, -> birthdate date, -> salary int -> ) -> partition by range(salary) -> ( -> partition p1 values less than (1000), -> partition p2 values less than (2000), -> partition p3 values less than maxvalue -> ); Query OK, 0 rows affected (0.08 sec) ****插入一条测试数据 mysql> insert tb05 values(1,'2016-03-06',80); Query OK, 1 row affected (0.01 sec) mysql>alter table tb05 reorganize partition p1 into( partition p01 values less than (100), partition p02 values less than (1000) ); ----不会丢失数据 mysql> explain partitions select * from tb05 where salary=80; #查看已经落在新的分区p01上 +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb05 | p01 | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | Using where | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ 1 row in set, 2 warnings (0.00 sec)
*4*合并分区
注:把2个分区合并为一个。
示例:把上面的tb05表中分解的p01和p02合并至p1上
mysql> alter table tb05 reorganize partition p01,p02 into(partition p1 values less than (1000)); --不会丢失数据 Query OK, 0 rows affected (0.05 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> explain partitions select * from tb05 where salary=80; +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | tb05 | p1 | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | Using where | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ 1 row in set, 2 warnings (0.00 sec)
*5*重新定义hash分区表:
RANGE和LIST分区在重新定义时,只能重新定义相邻的分区,不可以跳过分区,并且重新定义的分区区间必须和原分区区间一致,也不可以改变分区的类型。
示例:
mysql> EXPLAIN PARTITIONS SELECT * FROM `tb03`; +----+-------------+-------+-------------+------+---------------+------+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+-------------+------+---------------+------+---------+------+------+----------+-------+ | 1 | SIMPLE | tb03 | p0,p1,p2,p3 | ALL | NULL | NULL | NULL | NULL | 4 | 100.00 | NULL | +----+-------------+-------+-------------+------+---------------+------+---------+------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec) mysql> Alter table tb03 partition by hash(id)partitions 8; #不会丢失数据 Query OK, 4 rows affected (0.13 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql> EXPLAIN PARTITIONS SELECT * FROM `tb03`; +----+-------------+-------+-------------------------+------+---------------+------+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+-------------------------+------+---------------+------+---------+------+------+----------+-------+ | 1 | SIMPLE | tb03 | p0,p1,p2,p3,p4,p5,p6,p7 | ALL | NULL | NULL | NULL | NULL | 1 | 100.00 | NULL | +----+-------------+-------+-------------------------+------+---------------+------+---------+------+------+----------+-------+ 1 row in set, 2 warnings (0.02 sec)
*6*删除表的所有分区:
示例:删除tb03表所有分区
mysql> Alter table tb03 remove partitioning; #不会丢失数据 Query OK, 4 rows affected (0.07 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql> EXPLAIN PARTITIONS SELECT * FROM `tb03`; +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+ | 1 | SIMPLE | tb03 | NULL | ALL | NULL | NULL | NULL | NULL | 4 | 100.00 | NULL | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+ 1 row in set, 2 warnings (0.00 sec)
*7*整理分区碎片
注:如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB,或TEXT类型的列)作了许多修改,可以使用“ALTER TABLE ... OPTIMIZE PARTITION”来收回没有使用的空间,并整理分区数据文件的碎片。
ALTER TABLE tb03 optimize partition p1,p2;
*8*分析分区:
读取并保存分区的键分布。
mysql> ALTER TABLE tb04 CHECK partition p1,p2; +--------------+-------+----------+----------+ | Table | Op | Msg_type | Msg_text | +--------------+-------+----------+----------+ | testsms.tb04 | check | status | OK | +--------------+-------+----------+----------+ 1 row in set (0.01 sec)
*9*检查分区:
可以使用几乎与对非分区表使用CHECK TABLE 相同的方式检查分区。这个命令可以告诉tb04表分区p1,p2中的数据或索引是否已经被破坏。如果发生了这种情况,使用“ALTER TABLE ... REPAIR PARTITION”来修补该分区。
mysql> ALTER TABLE tb04 CHECK partition p1,p2; +--------------+-------+----------+----------+ | Table | Op | Msg_type | Msg_text | +--------------+-------+----------+----------+ | testsms.tb04 | check | status | OK | +--------------+-------+----------+----------+ 1 row in set (0.01 sec)
6、实际生产简单应用
场景:之前有个没有分区的大数据量表SmsSend(例表,大概2800万行记录),统计过程非常的耗时,考虑用年分区,并且对历史数据库进行备份,把过去2014年的数据转移至新的备份表smssendbak。如在线重定义比较耗时间,可采用exchange处理!
1)查看当前SmsSend表
mysql> SHOW CREATE TABLE SmsSend; #查看创建信息,未进行分区 | SmsSend | CREATE TABLE `SmsSend` ( `Guid` char(36) NOT NULL COMMENT '唯一标识', `SID` varbinary(85) DEFAULT NULL COMMENT '商家唯一编号', `Mobile` longtext NOT NULL COMMENT '接收手机号(以","分割)', `SmsContent` varchar(500) NOT NULL COMMENT '短信内容', `SmsCount` int(11) NOT NULL DEFAULT '1' COMMENT '条数', `Status` int(11) NOT NULL COMMENT '当前状态(0,等待发送;1,发送成功;-1,发送失败)', `SendChanelKeyName` varchar(20) DEFAULT NULL COMMENT '发送通道标识', `SendTime` datetime NOT NULL COMMENT '发送成功时间', `SendType` int(11) NOT NULL DEFAULT '1' COMMENT '短信发送类型(1,单发;2,群发)', `ReceiveTime` datetime DEFAULT NULL COMMENT '接收到回复报告的时间', `Priority` int(11) NOT NULL DEFAULT '0' COMMENT '优先级', `UserAccount` varchar(50) DEFAULT NULL COMMENT '操作员', `ChainStoreGuid` char(36) DEFAULT NULL COMMENT '操作店面唯一标识', `RelationKey` longtext COMMENT '回复报告关联标识', `Meno` text COMMENT '备注', `IsFree` bit(1) NOT NULL DEFAULT b'0' COMMENT '是否免费' ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 | mysql> SELECT COUNT(*) FROM SmsSend; #行记录 +----------+ | COUNT(*) | +----------+ | 28259803 | +----------+ 1 row in set (1 min 52.60 sec) #可得知大数据表下在线分区比较慢并且耗性能 mysql> ALTER TABLE SmsSend PARTITION BY RANGE (YEAR(SendTime)) -> ( -> PARTITION py01 VALUES LESS THAN (2015), -> PARTITION py02 VALUES LESS THAN (2016), -> PARTITION py03 VALUES LESS THAN (2017) ); Query OK, 28259803 rows affected (20 min 36.05 sec) Records: 28259803 Duplicates: 0 Warnings: 0 #查看分区记录数 mysql> select count(1) from SmsSend partition(py01); +----------+ | count(1) | +----------+ | 10 | +----------+ 1 row in set (0.00 sec) mysql> explain partitions select * from SmsSend where SendTime < '2015-01-01'; #2014年的数据落在第一分区 +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | SmsSend | py01 | ALL | NULL | NULL | NULL | NULL | 10 | 33.33 | Using where | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------------+ 1 row in set, 2 warnings (0.00 sec) mysql> select count(1) from SmsSend partition(py02); +----------+ | count(1) | +----------+ | 10 | +----------+ 1 row in set (0.00 sec)
2)快速创建一个smssendbak备份表与原SmsSend表结构一致,并删除备份表所有分区
mysql> CREATE TABLE smssendbak LIKE SmsSend; Query OK, 0 rows affected (0.14 sec) mysql> ALTER TABLE smssendbak REMOVE PARTITIONING; Query OK, 0 rows affected (0.19 sec) Records: 0 Duplicates: 0 Warnings: 0
3)使用EXCHANGE PARTITION转移分区数据至备份表,并查看原来表分区记录以及新备份表
smssendbak记录
mysql> ALTER TABLE SmsSend EXCHANGE PARTITION py01 WITH TABLE smssendbak; Query OK, 0 rows affected (0.13 sec) mysql> select count(1) from SmsSend partition(py01); #对比上面原SmsSend表分区的记录 +----------+ | count(1) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) mysql> SELECT COUNT(1) FROM smssendbak; #查看新smssendbak备份表转移记录 +----------+ | COUNT(1) | +----------+ | 10 | +----------+ 1 row in set (0.00 sec) *****************测试使用的表*********************************************************************** 创建一个基础测试表: CREATE TABLE `tb` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '表主键', `pid` int(10) unsigned NOT NULL COMMENT '产品ID', `price` decimal(15,2) NOT NULL COMMENT '单价', `num` int(11) NOT NULL COMMENT '购买数量', `uid` int(10) unsigned NOT NULL COMMENT '客户ID', `atime` datetime NOT NULL COMMENT '下单时间', `utime` int(10) unsigned NOT NULL DEFAULT 0 COMMENT '修改时间', `isdel` tinyint(4) NOT NULL DEFAULT '0' COMMENT '软删除标识', ) ; 插入数据: INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,CURRENT_TIMESTAMP()); INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,'2016-05-01 00:00:00'); INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,'2017-05-01 00:00:00'); INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89757,'2018-05-01 00:00:00'); INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2015-05-01 00:00:00'); INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2016-05-01 00:00:00'); INSERT INTO tb(`pid`,`price`,`num`,`uid`,`atime`) VALUES(1,12.23,1,89756,'2017-05-01 00:00:00'); ************************************插入大量的数据(建议百万以上)************************************* INSERT INTO `tb`(`pid`,`price`,`num`,`uid`,`atime`) SELECT `pid`,`price`,`num`,`uid`,`atime` FROM `tb`; ****注意,如果要删除自增长的主键id(修改过程中,建议该库改为只读),如下操作: Alter table tb change id id int(10); #先删除自增长 Alter table tb drop primary key;#删除主建 Alter table tb change id id int not null auto_increment; #如果想重新设置为自增字段 Alter table tb auto_increment=1; #自增起始
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。