详解python之协程gevent模块

Gevent官网文档地址:http://www.gevent.org/contents.html

进程、线程、协程区分

我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译为协同的例程,一般我们都简称为协程。

在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程。

进程和协程

下面对比一下进程和协程的相同点和不同点:

相同点:

  1. 相同点存在于,当我们挂起一个执行流的时,我们要保存的东西:
  2. 栈, 其实在你切换前你的局部变量,以及要函数的调用都需要保存,否则都无法恢复

寄存器状态,这个其实用于当你的执行流恢复后要做什么

而寄存器和栈的结合就可以理解为上下文,上下文切换的理解:
CPU看上去像是在并发的执行多个进程,这是通过处理器在进程之间切换来实现的,操作系统实现这种交错执行的机制称为上下文切换

操作系统保持跟踪进程运行所需的所有状态信息。这种状态,就是上下文。
在任何一个时刻,操作系统都只能执行一个进程代码,当操作系统决定把控制权从当前进程转移到某个新进程时,就会进行上下文切换,即保存当前进程的上下文,恢复新进程的上下文,然后将控制权传递到新进程,新进程就会从它上次停止的地方开始。

不同点:

  1. 执行流的调度者不同,进程是内核调度,而协程是在用户态调度,也就是说进程的上下文是在内核态保存恢复的,而协程是在用户态保存恢复的,很显然用户态的代价更低
  2. 进程会被强占,而协程不会,也就是说协程如果不主动让出CPU,那么其他的协程,就没有执行的机会。
  3. 对内存的占用不同,实际上协程可以只需要4K的栈就足够了,而进程占用的内存要大的多
  4. 从操作系统的角度讲,多协程的程序是单进程,单协程

线程和协程

既然我们上面也说了,协程也被称为微线程,下面对比一下协程和线程:

  1. 线程之间需要上下文切换成本相对协程来说是比较高的,尤其在开启线程较多时,但协程的切换成本非常低。
  2. 同样的线程的切换更多的是靠操作系统来控制,而协程的执行由我们自己控制。

协程只是在单一的线程里不同的协程之间切换,其实和线程很像,线程是在一个进程下,不同的线程之间做切换,这也可能是协程称为微线程的原因吧。

Gevent模块

Gevent是一种基于协程的Python网络库,它用到Greenlet提供的,封装了libevent事件循环的高层同步API。它让开发者在不改变编程习惯的同时,用同步的方式写异步I/O的代码。

简单示例:

import gevent
def test1():
  print 12
  gevent.sleep(0)
  print 34
def test2():
  print 56
  gevent.sleep(0)
  print 78
gevent.joinall([
  gevent.spawn(test1),
  gevent.spawn(test2),
])

结果: 

12
56
34
78

猴子补丁 Monkey patching

这个补丁是Gevent模块最需要注意的问题,有了它,才会让Gevent模块发挥它的作用。我们往往使用Gevent是为了实现网络通信的高并发,但是,Gevent直接修改标准库里面大部分的阻塞式系统调用,包括socket、ssl、threading和 select等模块,而变为协作式运行。但是我们无法保证你在复杂的生产环境中有哪些地方使用这些标准库会由于打了补丁而出现奇怪的问题。

一种方法是使用gevent下的socket模块,我们可以通过”from gevent import socket”来导入。不过更常用的方法是使用猴子布丁(Monkey patching)。使用猴子补丁褒贬不一,但是官网上还是建议使用”patch_all()”,而且在程序的第一行就执行。

from gevent import monkey; monkey.patch_socket()
import gevent
import socket
urls = ['www.baidu.com', 'www.gevent.org', 'www.python.org']
jobs = [gevent.spawn(socket.gethostbyname, url) for url in urls]
gevent.joinall(jobs, timeout=5)
print [job.value for job in jobs]

上述代码的第一行就是对socket标准库打上猴子补丁,此后socket标准库中的类和方法都会被替换成非阻塞式的,所有其他的代码都不用修改,这样协程的效率就真正体现出来了。Python中其它标准库也存在阻塞的情况,gevent提供了”monkey.patch_all()”方法将所有标准库都替换。

获取协程状态

  1. started属性/ready()方法:判断协程是否已启动。
  2. successful()方法:判断协程是否成功运行且没有抛出异常。
  3. value属性:获取协程执行完之后的返回值。

另外,greenlet协程运行过程中发生的异常是不会被抛出到协程外的,因此需要用协程对象的”exception”属性来获取协程中的异常。

下面的例子很好的演示了各种方法和属性的使用。

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
import gevent
def win():
  return 'You win!'
def fail():
 raise Exception('You failed!')
winner = gevent.spawn(win)
loser = gevent.spawn(fail)
print(winner.started) # True
print(loser.started)  # True
# 在Greenlet中发生的异常,不会被抛到Greenlet外面。
# 控制台会打出Stacktrace,但程序不会停止
try:
  gevent.joinall([winner, loser])
except Exception as e:
  # 这段永远不会被执行
  print('This will never be reached')
print(winner.ready()) # True
print(loser.started)  # True
print(winner.value) # 'You win!'
print(loser.value)  # None
print('successful ',winner.successful()) # True
print('successful ',loser.successful())  # False
# 这里可以通过raise loser.exception 或 loser.get()
# 来将协程中的异常抛出
print(loser.exception)

协程运行超时控制

之前我们讲过在”gevent.joinall()”方法中可以传入timeout参数来设置超时,我们也可以在全局范围内设置超时时间:

import gevent
from gevent import Timeout
timeout = Timeout(2) # 2 seconds
timeout.start()
def wait():

  gevent.sleep(10)
try:
  gevent.spawn(wait).join()
except Timeout:
  print('Could not complete')

上例中,我们将超时设为2秒,此后所有协程的运行,如果超过两秒就会抛出”Timeout”异常。我们也可以将超时设置在with语句内,这样该设置只在with语句块中有效:

with Timeout(1):
  gevent.sleep(10)

此外,我们可以指定超时所抛出的异常,来替换默认的”Timeout”异常。比如下例中超时就会抛出我们自定义的”TooLong”异常。

class TooLong(Exception):
  pass
with Timeout(1, TooLong):
  gevent.sleep(10)

协程间通信

事件(Event)对象

greenlet协程间的异步通讯可以使用事件(Event)对象。该对象的”wait()”方法可以阻塞当前协程,而”set()”方法可以唤醒之前阻塞的协程。在下面的例子中,5个waiter协程都会等待事件evt,当setter协程在3秒后设置evt事件,所有的waiter协程即被唤醒。

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
import gevent
from gevent.event import Event
evt = Event()

def setter():
  print 'Wait for me'
  gevent.sleep(3) # 3秒后唤醒所有在evt上等待的协程
  print "Ok, I'm done"
  evt.set() # 唤醒

def waiter():
  print "I'll wait for you"
  evt.wait() # 等待
  print 'Finish waiting'

gevent.joinall([
  gevent.spawn(setter),
  gevent.spawn(waiter),
  gevent.spawn(waiter),
  gevent.spawn(waiter),
  gevent.spawn(waiter),
  gevent.spawn(waiter)
])

AsyncResult事件

除了Event事件外,gevent还提供了AsyncResult事件,它可以在唤醒时传递消息。让我们将上例中的setter和waiter作如下改动:

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
from gevent.event import AsyncResult
aevt = AsyncResult()

def setter():
  print 'Wait for me'
  gevent.sleep(3) # 3秒后唤醒所有在evt上等待的协程
  print "Ok, I'm done"
  aevt.set('Hello!') # 唤醒,并传递消息

def waiter():
  print("I'll wait for you")
  message = aevt.get() # 等待,并在唤醒时获取消息
  print 'Got wake up message: %s' % message

队列 Queue

队列Queue的概念相信大家都知道,我们可以用它的put和get方法来存取队列中的元素。gevent的队列对象可以让greenlet协程之间安全的访问。运行下面的程序,你会看到3个消费者会分别消费队列中的产品,且消费过的产品不会被另一个消费者再取到:

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron<br>
import gevent
from gevent.queue import Queue
products = Queue()
def consumer(name):
  #while not products.empty():
  while True:
    try:
      print('%s got product %s' % (name, products.get_nowait()))
      gevent.sleep(0)
    except gevent.queue.Empty:
      break
  print('Quit')

def producer():
  for i in range(1, 10):
    products.put(i)

gevent.joinall([
  gevent.spawn(producer),
  gevent.spawn(consumer, 'steve'),
  gevent.spawn(consumer, 'john'),
  gevent.spawn(consumer, 'nancy'),
])

注意:协程队列跟线程队列是一样的,put和get方法都是阻塞式的,它们都有非阻塞的版本:put_nowait和get_nowait。如果调用get方法时队列为空,则是不会抛出”gevent.queue.Empty”异常。我们只能使用get_nowait()的方式让气抛出异常。

信号量

信号量可以用来限制协程并发的个数。它有两个方法,acquire和release。顾名思义,acquire就是获取信号量,而release就是释放。当所有信号量都已被获取,那剩余的协程就只能等待任一协程释放信号量后才能得以运行:

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
import gevent
from gevent.coros import BoundedSemaphore
sem = BoundedSemaphore(2)
def worker(n):
  sem.acquire()
  print('Worker %i acquired semaphore' % n)
  gevent.sleep(0)
  sem.release()
  print('Worker %i released semaphore' % n)
gevent.joinall([gevent.spawn(worker, i) for i in xrange(0, 6)])

上面的例子中,我们初始化了”BoundedSemaphore”信号量,并将其个数定为2。所以同一个时间,只能有两个worker协程被调度。程序运行后的结果如下:

Worker 0 acquired semaphore
Worker 1 acquired semaphore
Worker 0 released semaphore
Worker 1 released semaphore
Worker 2 acquired semaphore
Worker 3 acquired semaphore
Worker 2 released semaphore
Worker 3 released semaphore
Worker 4 acquired semaphore
Worker 4 released semaphore
Worker 5 acquired semaphore
Worker 5 released semaphore

如果信号量个数为1,那就等同于同步锁。

协程本地变量

同线程类似,协程也有本地变量,也就是只在当前协程内可被访问的变量:

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
import gevent
from gevent.local import local
data = local()
def f1():
  data.x = 1
  print data.x

def f2():
  try:
    print data.x
  except AttributeError:
    print 'x is not visible'

gevent.joinall([
  gevent.spawn(f1),
  gevent.spawn(f2)
])

通过将变量存放在local对象中,即可将其的作用域限制在当前协程内,当其他协程要访问该变量时,就会抛出异常。不同协程间可以有重名的本地变量,而且互相不影响。因为协程本地变量的实现,就是将其存放在以的”greenlet.getcurrent()”的返回为键值的私有的命名空间内。

多并发socket模型

服务器端:

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
import socket
import gevent
from gevent import socket, monkey
monkey.patch_all()
def server(port):
  s = socket.socket()
  s.bind(('0.0.0.0', port))
  s.listen(500)
  while True:
    cli, addr = s.accept()
    gevent.spawn(handle_request, cli)

def handle_request(conn):
  try:
    while True:
      data = conn.recv(1024)
      print("recv:", data)
      conn.send(data)
      if not data:
        conn.shutdown(socket.SHUT_WR)

  except Exception as ex:
    print(ex)
  finally:
    conn.close()
if __name__ == '__main__':
  server(8001)

当客户端连接上服务器端时,服务器端通过开辟一个协程与该客户端完成交互任务,同时由于使用了Gevent协程的方式,在每个客户端与服务器交互时,并不会影响到服务器端的工作。

客户端: 

#!/usr/bin/env python
# _*_ coding utf-8 _*_
#Author: aaron
import socket
HOST = 'localhost' # The remote host
PORT = 8001     # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
while True:
  msg = bytes(input(">>:"), encoding="utf8")
  s.sendall(msg)
  data = s.recv(1024)
  # print(data)
  print('Received', repr(data)) # repr 格式化输出
s.close()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 在Python的gevent框架下执行异步的Solr查询的教程

    我经常需要用Python与solr进行异步请求工作.这里有段代码阻塞在Solr http请求上, 直到第一个完成才会执行第二个请求,代码如下: import requests #Search 1 solrResp = requests.get('http://mysolr.com/solr/statedecoded/search?q=law') for doc in solrResp.json()['response']['docs']: print doc['catch_line'] #Sea

  • 简单了解python gevent 协程使用及作用

    简介 没有切换开销.因为子程序切换不是线程切换,而是由程序自身控制,没有线程切换的开销,因此执行效率高, 不需要锁机制.因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多 Python对协程的支持还非常有限,用在generator中的yield可以一定程度上实现协程. yield 传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁. 如果改用协程,生产者生产消息后,直接通过y

  • Python并发编程协程(Coroutine)之Gevent详解

    Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporateroutine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是con

  • python基于gevent实现并发下载器代码实例

    这篇文章主要介绍了python基于gevent实现并发下载器代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 并发下载原理 import gevent from gevent import monkey import urllib.request monkey.patch_all() def my_download(url): print('GET: %s' % url) resp = urllib.request.urlopen(url

  • python生成器/yield协程/gevent写简单的图片下载器功能示例

    本文实例讲述了python生成器/yield协程/gevent写简单的图片下载器功能.分享给大家供大家参考,具体如下: 1.生成器: '''第二种生成器''' # 函数只有有yield存在就是生成器 def test(i): while True: i += 1 res = yield i print(res) i += 1 return res def main(): t = test(1) # 创建生成器对象 print(next(t)) # next第一次执行从上到下,yield是终点 p

  • Python的gevent框架的入门教程

    Python通过yield提供了对协程的基本支持,但是不完全.而第三方的gevent为Python提供了比较完善的协程支持. gevent是第三方库,通过greenlet实现协程,其基本思想是: 当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行.由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO. 由于切换是在IO操作时自动完成,

  • Python的网络编程库Gevent的安装及使用技巧

    安装(以CentOS为例) gevent依赖libevent和greenlet: 1.安装libevent 直接yum install libevent 然后配置python的安装 2.安装easy_install (1) wget -q http://peak.telecommunity.com/dist/ez_setup.py (2)使用 python ez_setup.py (3)使用easy_install 查看命令是否可用,如果不可用可以讲路径加入到PATH中 3.安装greenlet

  • 详解python之协程gevent模块

    Gevent官网文档地址:http://www.gevent.org/contents.html 进程.线程.协程区分 我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译为协同的例程,一般我们都简称为协程. 在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程. 进程和协程 下面对比一下进程和协程的相同点和不同点: 相同点: 相同点存在于,当我们挂起一个执行流的时,我们要保存的东西: 栈, 其实在你切换前你的局部变量,以及

  • 详解c++20协程如何使用

    什么是协程 新接触的人看了网上很多人的见解都是一头雾水,本人的理解,协程就是可中断的函数,这个函数在执行到某一时刻可以暂停,保存当前的上下文(比如当前作用域的变量,函数参数等等),在后来某一时刻可以手动恢复这个中断的函数,把保存的上下文恢复并从中断的地方继续执行.简而言之,协程就是可中断的函数,协程如何实现:保存上下文和恢复上下文. 你可能会说协程不会这么简单的吧,我这里来举例一下啊,如python的协程 def test(): print('begin') yield print('hello

  • 详解Go多协程并发环境下的错误处理

    引言 在Go语言中,我们通常会用到panic和recover来抛出错误和捕获错误,这一对操作在单协程环境下我们正常用就好了,并不会踩到什么坑.但是在多协程并发环境下,我们常常会碰到以下两个问题.假设我们现在有2个协程,我们叫它们协程A和B好了: 如果协程A发生了panic,协程B是否会因为协程A的panic而挂掉? 如果协程A发生了panic,协程B是否能用recover捕获到协程A的panic? 答案分别是:会.不能. 那么下面我们来一一验证,并给出在具体的业务场景下的最佳实践. 问题一 如果

  • 详解python 3.6 安装json 模块(simplejson)

    JSON 相关概念: 序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON,XML等.反序列化就是从存储区域(JSON,XML)读取反序列化对象的状态,重新创建该对象. JSON(Java Script Object Notation):一种轻量级数据交互格式,相对于XML而言更简单,也易于阅读和编写,机器也方便解析和生成,Json是JavaScript中的一个子集. python2.6版本开始加入了JSON模块,python的j

  • 一文详解go同步协程的必备工具WaitGroup

    目录 1. 简介 2. 基本使用 2.1 定义 2.2 使用方式 2.3 使用例子 3.实现原理 3.1 设计初衷 3.2 基本原理 3.3 代码实现 3.3.1 Add方法 3.3.2 Done方法实现 3.3.3 Wait方法实现 3.4 实现补充 4.使用注意事项 4.1 Add方法和Done方法需要成对出现 4.2 在所有任务都已经添加之后,才调用Wait方法进行等待 5. WaitGroup常见使用场景 总结 1. 简介 本文将介绍 Go 语言中的 WaitGroup 并发原语,包括

  • 详解Python中contextlib上下文管理模块的用法

    咱们用的os模块,读取文件的时候,其实他是含有__enter__ __exit__ .  一个是with触发的时候,一个是退出的时候. with file('nima,'r') as f: print f.readline() 那咱们自己再实现一个标准的可以with的类. 我个人写python的时候,喜欢针对一些需要有关闭逻辑的代码,构造成with的模式 . #encoding:utf-8 class echo: def __enter__(self): print 'enter' def __

  • 详解python的argpare和click模块小结

    一.argparse模块 1.模块说明 # argparse是python的标准库中用来解析命令行参数的模块,用来替代已经过时的optparse模块,argparse能够根据程序中的定义的sys.argv中解析出这些参数, # 并自动生成帮助和使用信息 2.模块常用的参数 # 参数说明: # name/flag:参数的名字 # action:遇到参数的动作,默认值是store # nargs:参数的个数,可以是具体的数字,或者是+或者是*,*表示0个或者多个参数,+号表示1个或者多个参数 # d

  • 详解Python中的array数组模块相关使用

    初始化 array实例化可以提供一个参数来描述允许那种数据类型,还可以有一个初始的数据序列存储在数组中. import array import binascii s = 'This is the array.' a = array.array('c', s) print 'As string:', s print 'As array :', a print 'As hex :', binascii.hexlify(a) 数组配置为包含一个字节序列,用一个简单的字符串初始化. >>> =

  • Python中协程用法代码详解

    本文研究的主要是python中协程的相关问题,具体介绍如下. Num01–>协程的定义 协程,又称微线程,纤程.英文名Coroutine. 首先我们得知道协程是啥?协程其实可以认为是比线程更小的执行单元. 为啥说他是一个执行单元,因为他自带CPU上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. Num02–>协程和线程的差异 那么这个过程看起来和线程差不多.其实不然, 线程切换从系统层面远不止保存和恢复 CP

  • Python获取协程返回值的四种方式详解

    目录 介绍 源码 依次执行结果 介绍 获取协程返回值的四种方式: 1.通过ensure_future获取,本质是future对象中的result方 2.使用loop自带的create_task, 获取返回值 3.使用callback, 一旦await地方的内容运行完,就会运行callback 4.使用partial这个模块向callback函数中传入值 源码 import asyncio from functools import partial async def talk(name): pr

随机推荐