邻接表无向图的Java语言实现完整源码

邻接表无向图的介绍

邻接表无向图是指通过邻接表表示的无向图。

上面的图G1包含了”A,B,C,D,E,F,G”共7个顶点,而且包含了”(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)”共7条边。

上图右边的矩阵是G1在内存中的邻接表示意图。每一个顶点都包含一条链表,该链表记录了”该顶点的邻接点的序号”。例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是”0,1,3”;而这”0,1,3”分别对应”A,B,D”的序号,”A,B,D”都是C的邻接点。就是通过这种方式记录图的信息的。

邻接表无向图的代码说明

1. 基本定义

public class ListUDG {
	// 邻接表中表对应的链表的顶点
	private class ENode {
		int ivex;
		// 该边所指向的顶点的位置
		ENode nextEdge;
		// 指向下一条弧的指针
	}
	// 邻接表中表的顶点
	private class VNode {
		char data;
		// 顶点信息
		ENode firstEdge;
		// 指向第一条依附该顶点的弧
	}
	;
	private VNode[] mVexs;
	// 顶点数组
	...
}

(01)ListUDG是邻接表对应的结构体。mVexs则是保存顶点信息的一维数组。

(02)VNode是邻接表顶点对应的结构体。data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。

(03)ENode是邻接表顶点所包含的链表的节点对应的结构体。ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。

2.创建矩阵

这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据。

2.1创建图(用已提供的矩阵)

/*
 * 创建图(用已提供的矩阵)
 *
 * 参数说明:
 *   vexs -- 顶点数组
 *   edges -- 边数组
 */
public ListUDG(char[] vexs, char[][] edges) {
	// 初始化"顶点数"和"边数"
	int vlen = vexs.length;
	int elen = edges.length;
	// 初始化"顶点"
	mVexs = new VNode[vlen];
	for (int i = 0; i < mVexs.length; i++) {
		mVexs[i] = new VNode();
		mVexs[i].data = vexs[i];
		mVexs[i].firstEdge = null;
	}
	// 初始化"边"
	for (int i = 0; i < elen; i++) {
		// 读取边的起始顶点和结束顶点
		char c1 = edges[i][0];
		char c2 = edges[i][1];
		// 读取边的起始顶点和结束顶点
		int p1 = getPosition(edges[i][0]);
		int p2 = getPosition(edges[i][1]);
		// 初始化node1
		ENode node1 = new ENode();
		node1.ivex = p2;
		// 将node1链接到"p1所在链表的末尾"
		if(mVexs[p1].firstEdge == null)
		     mVexs[p1].firstEdge = node1; else
		      linkLast(mVexs[p1].firstEdge, node1);
		// 初始化node2
		ENode node2 = new ENode();
		node2.ivex = p1;
		// 将node2链接到"p2所在链表的末尾"
		if(mVexs[p2].firstEdge == null)
		     mVexs[p2].firstEdge = node2; else
		      linkLast(mVexs[p2].firstEdge, node2);
	}
}

该函数的作用是创建一个邻接表无向图。实际上,该方法创建的无向图,就是上面图G1。调用代码如下:

char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char[][] edges = new char[][]{
  {'A', 'C'},
  {'A', 'D'},
  {'A', 'F'},
  {'B', 'C'},
  {'C', 'D'},
  {'E', 'G'},
  {'F', 'G'}};
ListUDG pG;

pG = new ListUDG(vexs, edges);

2.2 创建图(自己输入)

/*
 * 创建图(自己输入数据)
 */
public ListUDG() {
	// 输入"顶点数"和"边数"
	System.out.printf("input vertex number: ");
	int vlen = readint();
	System.out.printf("input edge number: ");
	int elen = readint();
	if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
		System.out.printf("input error: invalid parameters!\n");
		return ;
	}
	// 初始化"顶点"
	mVexs = new VNode[vlen];
	for (int i = 0; i < mVexs.length; i++) {
		System.out.printf("vertex(%d): ", i);
		mVexs[i] = new VNode();
		mVexs[i].data = readchar();
		mVexs[i].firstEdge = null;
	}
	// 初始化"边"
	//mMatrix = new int[vlen][vlen];
	for (int i = 0; i < elen; i++) {
		// 读取边的起始顶点和结束顶点
		System.out.printf("edge(%d):", i);
		char c1 = readchar();
		char c2 = readchar();
		int p1 = getPosition(c1);
		int p2 = getPosition(c2);
		// 初始化node1
		ENode node1 = new ENode();
		node1.ivex = p2;
		// 将node1链接到"p1所在链表的末尾"
		if(mVexs[p1].firstEdge == null)
		     mVexs[p1].firstEdge = node1; else
		      linkLast(mVexs[p1].firstEdge, node1);
		// 初始化node2
		ENode node2 = new ENode();
		node2.ivex = p1;
		// 将node2链接到"p2所在链表的末尾"
		if(mVexs[p2].firstEdge == null)
		     mVexs[p2].firstEdge = node2; else
		      linkLast(mVexs[p2].firstEdge, node2);
	}
}

该函数是读取用户的输入,将输入的数据转换成对应的无向图。

邻接表无向图的完整源码

import java.io.IOException;
import java.util.Scanner;
public class ListUDG {
	// 邻接表中表对应的链表的顶点
	private class ENode {
		int ivex;
		// 该边所指向的顶点的位置
		ENode nextEdge;
		// 指向下一条弧的指针
	}
	// 邻接表中表的顶点
	private class VNode {
		char data;
		// 顶点信息
		ENode firstEdge;
		// 指向第一条依附该顶点的弧
	}
	;
	private VNode[] mVexs;
	// 顶点数组
	/*
   * 创建图(自己输入数据)
   */
	public ListUDG() {
		// 输入"顶点数"和"边数"
		System.out.printf("input vertex number: ");
		int vlen = readint();
		System.out.printf("input edge number: ");
		int elen = readint();
		if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
			System.out.printf("input error: invalid parameters!\n");
			return ;
		}
		// 初始化"顶点"
		mVexs = new VNode[vlen];
		for (int i = 0; i < mVexs.length; i++) {
			System.out.printf("vertex(%d): ", i);
			mVexs[i] = new VNode();
			mVexs[i].data = readchar();
			mVexs[i].firstEdge = null;
		}
		// 初始化"边"
		//mMatrix = new int[vlen][vlen];
		for (int i = 0; i < elen; i++) {
			// 读取边的起始顶点和结束顶点
			System.out.printf("edge(%d):", i);
			char c1 = readchar();
			char c2 = readchar();
			int p1 = getPosition(c1);
			int p2 = getPosition(c2);
			// 初始化node1
			ENode node1 = new ENode();
			node1.ivex = p2;
			// 将node1链接到"p1所在链表的末尾"
			if(mVexs[p1].firstEdge == null)
			       mVexs[p1].firstEdge = node1; else
			        linkLast(mVexs[p1].firstEdge, node1);
			// 初始化node2
			ENode node2 = new ENode();
			node2.ivex = p1;
			// 将node2链接到"p2所在链表的末尾"
			if(mVexs[p2].firstEdge == null)
			       mVexs[p2].firstEdge = node2; else
			        linkLast(mVexs[p2].firstEdge, node2);
		}
	}
	/*
   * 创建图(用已提供的矩阵)
   *
   * 参数说明:
   *   vexs -- 顶点数组
   *   edges -- 边数组
   */
	public ListUDG(char[] vexs, char[][] edges) {
		// 初始化"顶点数"和"边数"
		int vlen = vexs.length;
		int elen = edges.length;
		// 初始化"顶点"
		mVexs = new VNode[vlen];
		for (int i = 0; i < mVexs.length; i++) {
			mVexs[i] = new VNode();
			mVexs[i].data = vexs[i];
			mVexs[i].firstEdge = null;
		}
		// 初始化"边"
		for (int i = 0; i < elen; i++) {
			// 读取边的起始顶点和结束顶点
			char c1 = edges[i][0];
			char c2 = edges[i][1];
			// 读取边的起始顶点和结束顶点
			int p1 = getPosition(edges[i][0]);
			int p2 = getPosition(edges[i][1]);
			// 初始化node1
			ENode node1 = new ENode();
			node1.ivex = p2;
			// 将node1链接到"p1所在链表的末尾"
			if(mVexs[p1].firstEdge == null)
			       mVexs[p1].firstEdge = node1; else
			        linkLast(mVexs[p1].firstEdge, node1);
			// 初始化node2
			ENode node2 = new ENode();
			node2.ivex = p1;
			// 将node2链接到"p2所在链表的末尾"
			if(mVexs[p2].firstEdge == null)
			       mVexs[p2].firstEdge = node2; else
			        linkLast(mVexs[p2].firstEdge, node2);
		}
	}
	/*
   * 将node节点链接到list的最后
   */
	private void linkLast(ENode list, ENode node) {
		ENode p = list;
		while(p.nextEdge!=null)
		      p = p.nextEdge;
		p.nextEdge = node;
	}
	/*
   * 返回ch位置
   */
	private int getPosition(char ch) {
		for (int i=0; i<mVexs.length; i++)
		      if(mVexs[i].data==ch)
		        return i;
		return -1;
	}
	/*
   * 读取一个输入字符
   */
	private char readchar() {
		char ch='0';
		do {
			try {
				ch = (char)System.in.read();
			}
			catch (IOException e) {
				e.printStackTrace();
			}
		}
		while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
		return ch;
	}
	/*
   * 读取一个输入字符
   */
	private int readint() {
		Scanner scanner = new Scanner(System.in);
		return scanner.nextint();
	}
	/*
   * 打印矩阵队列图
   */
	public void print() {
		System.out.printf("List Graph:\n");
		for (int i = 0; i < mVexs.length; i++) {
			System.out.printf("%d(%c): ", i, mVexs[i].data);
			ENode node = mVexs[i].firstEdge;
			while (node != null) {
				System.out.printf("%d(%c) ", node.ivex, mVexs[node.ivex].data);
				node = node.nextEdge;
			}
			System.out.printf("\n");
		}
	}
	public static void main(String[] args) {
		char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
		char[][] edges = new char[][]{
		      {'A', 'C'},
		      {'A', 'D'},
		      {'A', 'F'},
		      {'B', 'C'},
		      {'C', 'D'},
		      {'E', 'G'},
		      {'F', 'G'}};
		ListUDG pG;
		// 自定义"图"(输入矩阵队列)
		//pG = new ListUDG();
		// 采用已有的"图"
		pG = new ListUDG(vexs, edges);
		pG.print();
		// 打印图
	}
}

总结

以上就是本文关于邻接表无向图的Java语言实现完整源码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Java计算数学表达式代码详解

Java中可变长度参数代码详解

Java语言求解完美数代码分析

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • java编程无向图结构的存储及DFS操作代码详解

    图的概念 图是算法中是树的拓展,树是从上向下的数据结构,结点都有一个父结点(根结点除外),从上向下排列.而图没有了父子结点的概念,图中的结点都是平等关系,结果更加复杂. 无向图                                                       有向图 图G=(V,E),其中V代表顶点Vertex,E代表边edge,一条边就是一个定点对(u,v),其中(u,v)∈V. 这两天遇到一个关于图的算法,在网上找了很久没有找到java版的关于数据结构中图的存储及其

  • Java实现的图片高质量缩放类定义与用法示例

    本文实例讲述了Java实现的图片高质量缩放类定义与用法.分享给大家供大家参考,具体如下: 找了很多都不理想,最后找个到老外写的,不得不承认老外写的确实牛B. package com.test; import com.sun.image.codec.jpeg.JPEGImageEncoder; import com.sun.image.codec.jpeg.JPEGCodec; import com.sun.image.codec.jpeg.JPEGEncodeParam; import java

  • Java编程实现高斯模糊和图像的空间卷积详解

    高斯模糊 高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop.GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像杂讯以及降低细节层次.这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同.高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果. 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积.由于正态分

  • Java编程实现基于图的深度优先搜索和广度优先搜索完整代码

    为了解15puzzle问题,了解了一下深度优先搜索和广度优先搜索.先来讨论一下深度优先搜索(DFS),深度优先的目的就是优先搜索距离起始顶点最远的那些路径,而广度优先搜索则是先搜索距离起始顶点最近的那些路径.我想着深度优先搜索和回溯有什么区别呢?百度一下,说回溯是深搜的一种,区别在于回溯不保留搜索树.那么广度优先搜索(BFS)呢?它有哪些应用呢?答:最短路径,分酒问题,八数码问题等.言归正传,这里笔者用java简单实现了一下广搜和深搜.其中深搜是用图+栈实现的,广搜使用图+队列实现的,代码如下:

  • Java编程实现邻接矩阵表示稠密图代码示例

    我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法. 我们假设A是这个二维数组,那么A中的一个元素aij不仅体现出了结点vi和结点vj的关系,而且aij的值正可以表示权值的大小. 邻接矩阵模型类 邻接矩阵模型类的类名为AMWGraph.java,能够通过该类构造一个邻接矩阵表示的图,且提供插入结点,插入边,取得某一结点的第一个邻接结点和下一个邻接结点. import java.u

  • Java实现的微信图片处理工具类【裁剪,合并,等比例缩放等】

    本文实例讲述了Java实现的微信图片处理工具类.分享给大家供大家参考,具体如下: 现在 外面核心,图片文章比较少,看了拷贝代码,而用不了,用相应jar包处理,很多等比例缩放,达不到 想要的给予的期望:本工具类,是之前做微信打印机写的 基于java自带的类,基于rgb. package com.zjpz.util; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt

  • 邻接表无向图的Java语言实现完整源码

    邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边. 上图右边的矩阵是G1在内存中的邻接表示意图.每一个顶点都包含一条链表,该链表记录了"该顶点的邻接点的序号".例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是"0,1,3":而这"

  • 半小时实现Java手撸网络爬虫框架(附完整源码)

    最近在做一个搜索相关的项目,需要爬取网络上的一些链接存储到索引库中,虽然有很多开源的强大的爬虫框架,但本着学习的态度,自己写了一个简单的网络爬虫,以便了解其中的原理.今天,就为小伙伴们分享下这个简单的爬虫程序!! 首先介绍每个类的功能: DownloadPage.java的功能是下载此超链接的页面源代码. FunctionUtils.java 的功能是提供不同的静态方法,包括:页面链接正则表达式匹配,获取URL链接的元素,判断是否创建文件,获取页面的Url并将其转换为规范的Url,截取网页网页源

  • Java实现飞机大战游戏 附完整源码

    目录 飞机大战详细文档 实现效果: 结构设计 详细分析 Main界面类使用边框布局,给面板分三个区,如图所示 绘制背景地图 飞行道具类UML图 绘制线程: 如何让我们的游戏动起来 背景的绘制 我的飞机的绘制 移动线程 如何控制我的飞机移动? 敌方飞机线程 : 如何生成敌方飞机呢? 敌方子弹线程 : 使每一个敌方飞机开火 检测碰撞线程 : 在子弹与敌机碰撞时,移除敌机 其他功能:显示玩家hp,掉落道具,得分,升级,更换地图 飞机大战详细文档 文末有源代码,以及本游戏使用的所有素材,将plane2文

  • 超详细OpenMV与STM32单片机通信 附完整源码

    目录 1.前言(闲话) 2.硬件连接 3.软件代码---OpenMV端 4.软件代码---STM32端 5.利用PC端测试数据数据是否发送接收正常 6.学习补充 (代码看不懂的时候可以来看一下) 8.博客更新 9.参考链接 10.完整版代码链接 1.前言(闲话) 最近在做电磁炮,发现题目需要用到颜色跟踪,于是花了一点时间学了一下OpenMV,只学习OpenMV是远远不够的,还需要实现与单片机的通信,本以为很简单,在CSDN上找了一些代码,直接拿来修改粘贴,把代码看明白了,这些只花了几个小时,本以

  • 基于spring-boot和docker-java实现对docker容器的动态管理和监控功能[附完整源码下载]

    docker简介 Docker 是一个开源的应用容器引擎,和传统的虚拟机技术相比,Docker 容器性能开销极低,因此也广受开发者喜爱.随着基于docker的开发者越来越多,docker的镜像也原来越丰富,未来各种企业级的完整解决方案都可以直接通过下载镜像拿来即用.因此docker变得越来越重要. 本文目的 本文通过一个项目实例来介绍如果通过docker对外接口来实现对docker容器的管理和监控. 应用场景: 对服务器资源池通过docker进行统一管理,按需分配资源和创建容器,达到资源最大化利

  • 最优雅地整合 Spring & Spring MVC & MyBatis 搭建 Java 企业级应用(附源码)

    这里使用 Maven 项目管理工具构建项目 初始化项目 打开 Intellij IDEA,点击 Create New Project 选择 Maven 构建项目 选择 JDK 版本 选择 maven-archetype-webapp 模板(Java Web 项目) 填写项目在 Maven 仓库中的坐标(在 Maven 仓库中根据这个坐标才能找到该项目) 选择 Maven 路径 选择 Maven 配置文件路径 选择 Maven 本地仓库路径 填写项目名 选择工作目录 创建目录 在 src > ma

  • Java实现俄罗斯方块的源码分享

    本文实现的功能有: 1. 初始化游戏窗口 2.初始化游戏的界面 3.初始化游戏的说明面板 4.随机生成下落方块 5.方块下落速度变化 6.判断方块是否可以下落 7.移除某一行方块上面的方块后让上面的方块掉落 8.刷新移除某一行方块后的界面 9.清除方块 10.绘制方块 11.键盘控制方块的移动.变形和快速下落 12.游戏的暂停功能 三小时纯手工打造,具体实现代码: import javax.swing.*; import java.awt.*; import java.awt.event.Key

  • java.lang.Void类源码解析

    在一次源码查看ThreadGroup的时候,看到一段代码,为以下: /* * @throws NullPointerException if the parent argument is {@code null} * @throws SecurityException if the current thread cannot create a * thread in the specified thread group. */ private static Void checkParentAcc

  • JAVA 枚举单例模式及源码分析的实例详解

    JAVA 枚举单例模式及源码分析的实例详解 单例模式的实现有很多种,网上也分析了如今实现单利模式最好用枚举,好处不外乎三点: 1.线程安全 2.不会因为序列化而产生新实例 3.防止反射攻击但是貌似没有一篇文章解释ENUM单例如何实现了上述三点,请高手解释一下这三点: 关于第一点线程安全,从反编译后的类源码中可以看出也是通过类加载机制保证的,应该是这样吧(解决) 关于第二点序列化问题,有一篇文章说枚举类自己实现了readResolve()方法,所以抗序列化,这个方法是当前类自己实现的(解决) 关于

  • java 中RandomAccess接口源码分析

    java 中RandomAccess接口源码分析 RandomAccess是一个接口,位于java.util包中. 这个接口的作用注释写的很清楚了: /** * Marker interface used by <tt>List</tt> implementations to indicate that * they support fast (generally constant time) random access. The primary * purpose of this

随机推荐