python中yield的用法详解——最简单,最清晰的解释

首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受。

接下来是正题:

首先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了。看做return之后再把它看做一个是生成器(generator)的一部分(带yield的函数才是真正的迭代器),好了,如果你对这些不明白的话,那先把yield看做return,然后直接看下面的程序,你就会明白yield的全部意思了:

def foo():
 print("starting...")
 while True:
  res = yield 4
  print("res:",res)
g = foo()
print(next(g))
print("*"*20)
print(next(g))

就这么简单的几行代码就让你明白什么是yield,代码的输出这个:

starting...
4
********************
res: None
4

我直接解释代码运行顺序,相当于代码单步调试:

1.程序开始执行以后,因为foo函数中有yield关键字,所以foo函数并不会真的执行,而是先得到一个生成器g(相当于一个对象)

2.直到调用next方法,foo函数正式开始执行,先执行foo函数中的print方法,然后进入while循环

3.程序遇到yield关键字,然后把yield想想成return,return了一个4之后,程序停止,并没有执行赋值给res操作,此时next(g)语句执行完成,所以输出的前两行(第一个是while上面的print的结果,第二个是return出的结果)是执行print(next(g))的结果,

4.程序执行print("*"*20),输出20个*

5.又开始执行下面的print(next(g)),这个时候和上面那个差不多,不过不同的是,这个时候是从刚才那个next程序停止的地方开始执行的,也就是要执行res的赋值操作,这时候要注意,这个时候赋值操作的右边是没有值的(因为刚才那个是return出去了,并没有给赋值操作的左边传参数),所以这个时候res赋值是None,所以接着下面的输出就是res:None,

6.程序会继续在while里执行,又一次碰到yield,这个时候同样return 出4,然后程序停止,print函数输出的4就是这次return出的4.

到这里你可能就明白yield和return的关系和区别了,带yield的函数是一个生成器,而不是一个函数了,这个生成器有一个函数就是next函数,next就相当于“下一步”生成哪个数,这一次的next开始的地方是接着上一次的next停止的地方执行的,所以调用next的时候,生成器并不会从foo函数的开始执行,只是接着上一步停止的地方开始,然后遇到yield后,return出要生成的数,此步就结束。

def foo():
 print("starting...")
 while True:
  res = yield 4
  print("res:",res)
g = foo()
print(next(g))
print("*"*20)
print(g.send(7))

再看一个这个生成器的send函数的例子,这个例子就把上面那个例子的最后一行换掉了,输出结果:

starting...
4
********************
res: 7
4

先大致说一下send函数的概念:此时你应该注意到上面那个的紫色的字,还有上面那个res的值为什么是None,这个变成了7,到底为什么,这是因为,send是发送一个参数给res的,因为上面讲到,return的时候,并没有把4赋值给res,下次执行的时候只好继续执行赋值操作,只好赋值为None了,而如果用send的话,开始执行的时候,先接着上一次(return 4之后)执行,先把7赋值给了res,然后执行next的作用,遇见下一回的yield,return出结果后结束。

5.程序执行g.send(7),程序会从yield关键字那一行继续向下运行,send会把7这个值赋值给res变量

6.由于send方法中包含next()方法,所以程序会继续向下运行执行print方法,然后再次进入while循环

7.程序执行再次遇到yield关键字,yield会返回后面的值后,程序再次暂停,直到再次调用next方法或send方法。

这就结束了,说一下,为什么用这个生成器,是因为如果用List的话,会占用更大的空间,比如说取0,1,2,3,4,5,6............1000

你可能会这样:

for n in range(1000):
 a=n

这个时候range(1000)就默认生成一个含有1000个数的list了,所以很占内存。

这个时候你可以用刚才的yield组合成生成器进行实现,也可以用xrange(1000)这个生成器实现

yield组合:

def foo(num):
 print("starting...")
 while num<10:
  num=num+1
  yield num
for n in foo(0):
 print(n)

输出:

starting...
1
2
3
4
5
6
7
8
9
10

xrange(1000):

for n in xrange(1000):
 a=n

其中要注意的是python3时已经没有xrange()了,在python3中,range()就是xrange()了,你可以在python3中查看range()的类型,它已经是个<class 'range'>了,而不是一个list了,毕竟这个是需要优化的。

以上所述是小编给大家介绍的python中yield的用法详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • 详解Python3中yield生成器的用法

    任何使用yield的函数都称之为生成器,如: def count(n): while n > 0: yield n #生成值:n n -= 1 另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器. 使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值. c = count(5) c.__next__() #python 3.4.3要

  • 举例详解Python中yield生成器的用法

    yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的). yield是一个表达式,是有返回值的. 当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子: 例1: >>> def mygenerator(): ... print 'start...' ... yield 5 ... >>> mygenerator()

  • 浅析Python中yield关键词的作用与用法

    前言 为了理解yield是什么,首先要明白生成器(generator)是什么,在讲生成器之前先说说迭代器(iterator),当创建一个列表(list)时,你可以逐个的读取每一项,这就叫做迭代(iteration). >>> mylist = [1, 2, 3] >>> for i in mylist : ... print(i) 1 2 3 mylist 是一个可迭代的对象.当使用一个列表生成式来建立一个列表的时候,就建立了一个可迭代的对象: >>>

  • 基于python yield机制的异步操作同步化编程模型

    本文总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性. 游戏引擎一般都采用分布式框架,通过一定的策略来均衡服务器集群的资源负载,从而保证服务器运算的高并发性和CPU高利用率,最终提高游戏的性能和负载.由于引擎的逻辑层调用是非抢占式的,服务器之间都是通过异步调用来进行通讯,导致游戏逻辑无法同步执行,所以在代码层不得不人为地添加很多回调函数,使一个原本完整的功能碎片化地分布在各个回调函数中. 异步逻辑 以游戏中的副本评分逻辑为例,在副本结束时副本管理进程需要

  • 初步解析Python中的yield函数的用法

    您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念. 如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数: 清单 1. 简单输出斐波那契數列前 N 个数 def

  • Python 3中的yield from语法详解

    前言 最近在捣鼓Autobahn,它有给出个例子是基于asyncio 的,想着说放到pypy3上跑跑看竟然就--失败了. pip install asyncio直接报invalid syntax,粗看还以为2to3处理的时 候有问题--这不能怪我,好-多package都是用2写了然后转成3的--结果发 现asyncio本来就只支持3.3+的版本,才又回头看代码,赫然发现一句 yield from:yield我知道,但是yield from是神马? PEP-380 好吧这个标题是我google出来

  • 由浅入深讲解python中的yield与generator

    前言 本文将由浅入深详细介绍yield以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,generator使用中的注意事项.本文不包括enhanced generator即pep342相关内容,这部分内容在之后介绍. generator基础 在python的函数(function)定义中,只要出现了yield表达式(Yield expression),那么事实上定义的是一个generator

  • Python yield 使用浅析

    初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yield ?本文将由浅入深地讲解 yield 的概念和用法,帮助读者体会 Python 里 yield 简单而强大的功能. 您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来

  • Python中生成器和yield语句的用法详解

    在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" 或者 "定义和使用函数")对于大多数学生是没有问题的.但是有一些话题,大多数学生只有很少,或者完全没有任何接触,尤其是"生成器和yield关键字".我猜这对大多数新手Python程序员也是如此. 有事实表明,在我花了大功夫后,有些人仍然不能理解生成器和yield关键字.我想让这个问题有所改善.在这篇文章中,我将解

  • 深入学习python的yield和generator

    前言 没有用过的东西,没有深刻理解的东西很难说自己会,而且被别人一问必然破绽百出.虽然之前有接触过python协程的概念,但是只是走马观花,这两天的一次交谈中,别人问到了协程,顿时语塞,死活想不起来曾经看过的东西,之后突然想到了yield,但为时已晚,只能说概念不清,所以本篇先缕缕python的生成器和yield关键字. 什么是生成器 1.生成器是一个特殊的程序,可以被用作控制循环的迭代行为 2.生成器类似于返回值为数组的一个函数,这个函数可以接收参数,可以被调用,但是,不同于一般的函数会一次性

随机推荐