Python代码实现KNN算法

kNN算法是k-近邻算法的简称,主要用来进行分类实践,主要思路如下:

1.存在一个训练数据集,每个数据都有对应的标签,也就是说,我们知道样本集中每一数据和他对应的类别。
2.当输入一个新数据进行类别或标签判定时,将新数据的每个特征值与训练数据集中的每个数据进行比较,计算其到训练数据集中每个点的距离(下列代码实现使用的是欧式距离)。
3.然后提取k个与新数据最接近的训练数据点所对应的标签或类别。
4.出现次数最多的标签或类别,记为当前预测新数据的标签或类别。

欧式距离公式为:

distance= sqrt((xA0-XB0)^2+(xA1-XB1)^2+...+(xAn-XBn)^2)(若数据有n个特征项)

以下为代码实现:

#! /usr/bin/python
#coding=utf-8
from numpy import *
import operator
def createDataSet():
  group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])#训练数据样本集合
  labels = ['A','A','B','B']#训练数据对应的类别
  return group,labels
'''''
inX:用于分类的输入向量
dataSet:训练样本集合
labels:标签向量
k:k-近邻算法中的k
'''
def classify0(inX,dataSet,labels,k):
  dataSetSize = dataSet.shape[0] #获取数组的维度,也就是获取训练样本的行数(样本数),若获取列数,则为shape[1]
  diffMat = tile(inX,(dataSetSize,1)) - dataSet # tile 表示inX在重复dataSetSize行,重复1列。为输入向量与各个样本求取欧式距离做准备。
  sqDiddMat = diffMat**2 #diffMat是输入向量与我们训练样本每个点相减得到的,**2表示值的结果取平方。
  sqDistances = sqDiddMat.sum(axis=1)#默认为axis=0,axis=1以后就是将一个矩阵的每一行向量相加
  distances = sqDistances**0.5 #对结果进行开平方,得到输入向量与每个训练样本中点的欧式距离
  sorteDistIndicies = distances.argsort()#将距离结果按照从小到大排序获得索引值
  classcount={} #这是一个字典,key为类别,value为距离最小的前k个样本点里面为该类别的个数。
  for i in range(k):
    voteIlabel = labels[sorteDistIndicies[i]]#获取距离最小的前k个样本点对应的label值
    classcount[voteIlabel] = classcount.get(voteIlabel,0)+1 #如果之前的样本点label值与与现在的相同,则累计加1,否则,此次加1
  sorteClassCount = sorted(classcount.iteritems(),key=operator.itemgetter(1),reverse=True) #针对calsscount获取对象的第1个域的值进行降序排序。也就是说根据类别的个数从大到小排序。
  return sorteClassCount[0][0] #返回排序的字典的第一个元素的key,即分类后的类别 

createDataSet()
print classify0([0.9,0.9],group,labels,3)

结果为:A

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 使用python实现knn算法

    本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下 knn算法描述 对需要分类的点依次执行以下操作: 1.计算已知类别数据集中每个点与该点之间的距离 2.按照距离递增顺序排序 3.选取与该点距离最近的k个点 4.确定前k个点所在类别出现的频率 5.返回前k个点出现频率最高的类别作为该点的预测分类 knn算法实现 数据处理 #从文件中读取数据,返回的数据和分类均为二维数组 def loadDataSet(filename): dataSet = [] labels

  • python机器学习实战之最近邻kNN分类器

    K近邻法是有监督学习方法,原理很简单,假设我们有一堆分好类的样本数据,分好类表示每个样本都一个对应的已知类标签,当来一个测试样本要我们判断它的类别是, 就分别计算到每个样本的距离,然后选取离测试样本最近的前K个样本的标签累计投票, 得票数最多的那个标签就为测试样本的标签. 源代码详解: #-*- coding:utf-8 -*- #!/usr/bin/python # 测试代码 约会数据分类 import KNN KNN.datingClassTest1() 标签为字符串 KNN.datingC

  • Python语言描述KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可

  • python实现kNN算法

    kNN(k-nearest neighbor)是一种基本的分类与回归的算法.这里我们先只讨论分类中的kNN算法. k邻近算法的输入为实例的特征向量,对对应于特征空间中的点:输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测.所以可以说,k近邻法不具有显示的学习过程.k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的"模型" k值的选择,距离的度量和分类

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • 以Python代码实例展示kNN算法的实际运用

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有关.由于kNN方法主

  • Python代码实现KNN算法

    kNN算法是k-近邻算法的简称,主要用来进行分类实践,主要思路如下: 1.存在一个训练数据集,每个数据都有对应的标签,也就是说,我们知道样本集中每一数据和他对应的类别. 2.当输入一个新数据进行类别或标签判定时,将新数据的每个特征值与训练数据集中的每个数据进行比较,计算其到训练数据集中每个点的距离(下列代码实现使用的是欧式距离). 3.然后提取k个与新数据最接近的训练数据点所对应的标签或类别. 4.出现次数最多的标签或类别,记为当前预测新数据的标签或类别. 欧式距离公式为: distance=

  • Python实现的knn算法示例

    本文实例讲述了Python实现的knn算法.分享给大家供大家参考,具体如下: 代码参考机器学习实战那本书: 机器学习实战 (Peter Harrington著) 中文版 机器学习实战 (Peter Harrington著) 英文原版[附源代码] 有兴趣你们可以去了解下 具体代码: # -*- coding:utf-8 -*- #! python2 ''''' @author:zhoumeixu createdate:2015年8月27日 ''' #np.zeros((4,2)) #np.zero

  • Python实现基于KNN算法的笔迹识别功能详解

    本文实例讲述了Python实现基于KNN算法的笔迹识别功能.分享给大家供大家参考,具体如下: 需要用到: Numpy库 Pandas库 手写识别数据 点击此处本站下载. 数据说明: 数据共有785列,第一列为label,剩下的784列数据存储的是灰度图像(0~255)的像素值 28*28=784 KNN(K近邻算法): 从训练集中找到和新数据最接近的K条记录,根据他们的主要分类来决定新数据的类型. 这里的主要分类,可以有不同的判别依据,比如"最多","最近邻",或者

  • python可视化实现KNN算法

    简介 这里通过python的绘图工具Matplotlib包可视化实现机器学习中的KNN算法. 需要提前安装python的Numpy和Matplotlib包. KNN–最近邻分类算法,算法逻辑比较简单,思路如下: 1.设一待分类数据iData,先计算其到已标记数据集中每个数据的距离,例如欧拉距离sqrt((x1-x2)^2+(y1-y2)^2): 2.然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类. KNN--最近邻算法python代码 代码实现: import

  • 纯python实现机器学习之kNN算法示例

    前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现.这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor). k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似). 原理 kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类. 具体讲,存在训练样本集, 每个

  • python实现kNN算法识别手写体数字的示例代码

    1.总体概要 kNN算法已经在上一篇博客中说明.对于要处理手写体数字,需要处理的点主要包括: (1)图片的预处理:将png,jpg等格式的图片转换成文本数据,本博客的思想是,利用图片的rgb16进制编码(255,255,255)为白色,(0,0,0)为黑色,获取图片大小后,逐个像素进行判断分析,当此像素为空白时,在文本数据中使用0来替换,反之使用1来替换. from PIL import Image '''将图片转换成文档,使用0,1分别替代空白和数字''' pic = Image.open('

  • 利用Python实现kNN算法的代码

    邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了.虽然很简单,但在解决特定问题时却能发挥很好的效果.因此,学习kNN算法是机器学习入门的一个很好的途径. kNN算法的思想非常的朴素,它选取k个离测试点最近的样本点,输出在这k个样本点中数量最多的标签(label).我们假设每一个样本有m个特征值(property),则一个样本的可以用一个m维向量表示: X =( x1,x2,... , xm ),  同样地

随机推荐