python 图像平移和旋转的实例

如下所示:

import cv2
import math
import numpy as np
def move(img):
 height, width, channels = img.shape
 emptyImage2 = img.copy()
 x=20
 y=20
 for i in range(height):
 for j in range(width):
 if i>=x and j>=y:
  emptyImage2[i,j]=img[i-x][j-y]
 else:
  emptyImage2[i,j]=(0,0,0)

 return emptyImage2

img = cv2.imread("e:\\lena.bmp")

cv2.namedWindow("Image")
SaltImage=move(img)
cv2.imshow("Image",img)
cv2.imshow("ss",SaltImage)
cv2.waitKey(0)

旋转:

import cv2
import math
import numpy as np
def XRotate(image, angle):
 h, w, channels = image.shape
 anglePi = angle * math.pi / 180.0
 cosA = math.cos(anglePi)
 sinA = math.sin(anglePi)
 X1 = math.ceil(abs(0.5 * h * cosA + 0.5 * w * sinA))
 X2 = math.ceil(abs(0.5 * h * cosA - 0.5 * w * sinA))
 Y1 = math.ceil(abs(-0.5 * h * sinA + 0.5 * w * cosA))
 Y2 = math.ceil(abs(-0.5 * h * sinA - 0.5 * w * cosA))
 hh = int(2 * max(Y1, Y2))
 ww = int(2 * max(X1, X2))
 emptyImage2 = np.zeros((hh, ww, channels), np.uint8)
 for i in range(hh):
 for j in range(ww):
  x = cosA * i + sinA * j - 0.5 * ww * cosA - 0.5 * hh * sinA + 0.5 * w
  y = cosA * j- sinA * i+ 0.5 * ww * sinA - 0.5 * hh * cosA + 0.5 * h
  x = int(x)
  y = int(y)
  if x > -1 and x < h and y > -1 and y < w :

  emptyImage2[i, j] = image[x, y]

 return emptyImage2

image = cv2.imread("e:\\lena.bmp")
iXRotate12 = XRotate(image, 30)
cv2.imshow('image', image)
cv2.imshow('iXRotate12', iXRotate12)
cv2.waitKey(0)

以上这篇python 图像平移和旋转的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python对列进行平移变换的方法(shift)

    在进行数据操作时, 经常会碰到基于同一列进行错位相加减的操作, 即对某一列进行向上或向下平移(shift). 往常, 我们都会使用循环进行操作, 但经过查阅相关资料, 发现结合pandas里的groupby和shift两个函数就能轻松实现上述要求. #创建样例数据 temp = pd.DataFrame({'id':[1,1,1,2,2,3],'value':[1,2,3,4,5,6]});temp Out[1]: id value 0 1 1 1 1 2 2 1 3 3 2 4 4 2 5 5

  • 浅谈pandas中shift和diff函数关系

    通过?pandas.DataFrame.shift命令查看帮助文档 Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq 该函数主要的功能就是使数据框中的数据移动,若freq=None时,根据axis的设置,行索引数据保持不变,列索引数据可以在行上上下移动

  • Pandas Shift函数的基础入门学习笔记

    Pandas Shift函数基础 在使用Pandas的过程中,有时会遇到shift函数,今天就一起来彻底学习下.先来看看帮助文档是怎么说的: >>> import pandas >>> help(pandas.DataFrame.shift) Help on function shift in module pandas.core.frame: shift(self, periods=1, freq=None, axis=0) Shift index by desire

  • python 图像平移和旋转的实例

    如下所示: import cv2 import math import numpy as np def move(img): height, width, channels = img.shape emptyImage2 = img.copy() x=20 y=20 for i in range(height): for j in range(width): if i>=x and j>=y: emptyImage2[i,j]=img[i-x][j-y] else: emptyImage2[i

  • python 图像的离散傅立叶变换实例

    图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换.结果需要通过使用abs求绝对值才可以进行可视化,但是视觉效果并不理想,因为傅立叶频谱范围很大,所以要用log对数变换来改善视觉效果. 在使用l

  • Python实现简单图像缩放与旋转

    目录 1. 图像缩放 1.2. 使用命令 1.2. 原理介绍 1.3. 方法比较 2. 旋转 2.1. 使用命令 2.2. 实验效果 总结 1. 图像缩放 1.2. 使用命令 import cv2 # 缩放 def resize(img, k, inter): res = cv2.resize(img, None, fx=k, fy=k, interpolation=inter) return res 参数设定(interpolation): 0:最近邻插值 1:双线性插值 2:基于局部像素的重

  • Python OpenCV 图像平移的实现示例

    每次学习新东西的时候,橡皮擦都是去海量检索,然后找到适合自己理解的部分. 再将其拼凑成一个小的系统,争取对该内容有初步理解. 今天这 1 个小时,核心要学习的是图像的平移,在电脑上随便打开一张图片,实现移动都非常简单,但是在代码中,出现了一些新的概念. 检索 OpenCV 图像平移相关资料时,碰到的第一个新概念是就是 仿射变换. 每次看到这样子的数学名字,必然心中一凉,做为一个数学小白,又要瑟瑟发抖了. 百度一下,看看百科中是如何介绍的. 看过上图中的一些相关简介之后,对于这个概念也并没有太深刻

  • Python 将RGB图像转换为Pytho灰度图像的实例

    问题: 我正尝试使用matplotlib读取RGB图像并将其转换为灰度. 在matlab中,我使用这个: img = rgb2gray(imread('image.png')); 在matplotlib tutorial中他们没有覆盖它.他们只是在图像中阅读 import matplotlib.image as mpimg img = mpimg.imread('image.png') 然后他们切片数组,但是这不是从我所了解的将RGB转换为灰度. lum_img = img[:,:,0] 编辑:

  • python+matplotlib绘制旋转椭圆实例代码

    旋转椭圆 实例代码: import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Ellipse delta = 45.0 # degrees angles = np.arange(0, 360 + delta, delta) ells = [Ellipse((1, 1), 4, 2, a) for a in angles] a = plt.subplot(111, aspect='equal

  • python opencv判断图像是否为空的实例

    如下所示: import cv2 im = cv2.imread('2.jpg') if im is None: print("图像为空") # cv2.imshow("ss", im) # cv2.waitKey(0) 以上这篇python opencv判断图像是否为空的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 用Python去除图像的黑色或白色背景实例

    用Python去除背景,得到有效的图像 此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理 需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图 对此有两个思路: 用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦) 对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是 在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行

  • python、PyTorch图像读取与numpy转换实例

    Tensor转为numpy np.array(Tensor) numpy转换为Tensor torch.Tensor(numpy.darray) PIL.Image.Image转换成numpy np.array(PIL.Image.Image) numpy 转换成PIL.Image.Image Image.fromarray(numpy.ndarray) 首先需要保证numpy.ndarray 转换成np.uint8型 numpy.astype(np.uint8),像素值[0,255]. 同时灰

  • python中图像通道分离与合并实例

    我就废话不多说了,直接上代码吧! import cv2 img = cv2.imread("1.jpg") b, g, r = cv2.split(img)  #分离函数 merged = cv2.merge([b,g,r]) #合并函数 cv2.imshow('image',img) cv2.imshow("Blue 1", b) cv2.imshow("Green 1", g) cv2.imshow("Red 1", r)

随机推荐