如何实现Java中一个简单的LinkedList

LinkedList与ArrayList都是List接口的具体实现类。LinkedList与ArrayList在功能上也是大体一致,但是因为两者具体的实现方式不一致,所以在进行一些相同操作的时候,其效率也是有差别的。

对于抽象的数据结构——线性表而言,线性表分为两种,一种是顺序存储结构的顺序表,另一种是通过指针来描述其逻辑位置的链表。

针对于具体的Java实现:

  1. 顺序存储的顺序表是用数组来实现的,以数组为基础进行封装各种操作而形成的List为ArrayList
  2. 链表是用指针来描述其逻辑位置,在Java中以双向链表为基础进行封装各种操作而形成的List为LinkedList

针对插入与删除操作,ArrayList每插入一个元素,首先需要判断数组的空间够不够,不够要进行扩容,在有足够的空间的基础上,在指定的index位置上插入元素,但是该index及以后的元素都要后移。虽然删除操作不需要判断空间够不够,但同样需要该index及以后的元素向前移动,这些移动的操作会增加时间的复杂度。但是对于LinkedList就不一样,因为使用指针来指示其逻辑的位置,所以插入与删除的操作的时间复杂度都是 ** O(1) **

虽然对于ArrayList而言,插入与删除的时间复杂度很高,但是对于查找指定位置的元素这种操作而言,就非常的快,因为可以通过数组直接得到该下标对应的元素。反而,LinkedList而言,无法直接返回指定位置的元素,需要一个个查询,其时间的复杂度就是 ** O(n) **

与如何实现Java的ArrayList经典实体类一样,实现的目的主要在于练手以及掌握官方实现的原理和一些技巧,因此很多需要与其他类配合的方法和功能,就先不在这里实现如iterator等

所以,实现的LinkedList的方法如下:

add方法

get方法

indexOf方法

remove方法

与实现ArrayList的名字一样,为SimpleLinkedList。源码地址,欢迎star,fork

构建一个双向链表

构建的代码如下:

 private static class Node<E>{
 E item;
 Node<E> next;
 Node<E> prev;
 public Node(E item, Node<E> next, Node<E> prev) {
 this.item = item;
 this.next = next;
 this.prev = prev;
 }
 }

常规的双向链表的构建方法,一个数字域存放数组,一个前指针指向一个Node类型的元素,一个后指针指向一个Node类型的元素。

对于LinkedList的实现而言,还需要以下三个成员变量

 private int size;
 private Node<E> first;
 private Node<E> last;

Add方法

这里实现的add方法是简单的add(E e)以及add(int index,E e)两个方法,addAll()将其他集合转换LinkedList的方法,暂时放到以后去实现。

add方法两个重载方法,其分别对应不同的添加方式。先说add(E e)方法的实现。

 public boolean add(E element) {
 addAtLast(element);
 return true;
 }

不指定位置添加元素,则默认添加到了链表的最后。addAtLast的核心代码如下:

 private void addAtLast(E element) {
 Node<E> l = last;
 Node<E> node = new Node<E>(element, null, l);
 last = node;
 if (l == null) {
 first = node;
 } else {
 l.next = node;
 }
 size++;
 }

首先找到最后一位的Node元素,然后根据element创建一个新的Node元素,其next指向为null,prev指向为最后一位Node元素。在创建完Node元素之后,last就变成了先创建的Node元素,接下来只需要把新node元素加到链表中即可。即让l对象(原最后一位,现倒数第二位元素的next指针,指向新node元素)。至此,新node元素的next指向null,prev指向倒数第二个元素,倒数第二个元素的next指向新node,就将node成功加入链表。

上述的操作也可以看出,其插入的操作非常省时间,比起ArrayList,扩容,移动元素快很多。

add的第二个重载方法 add(int index ,E e),先看代码实现:

 public void add(int index, E element) {
 checkRangeForAdd(index);
 if (index == size) {
 addAtLast(element);
 } else {
 Node<E> l = node(index);
 addBeforeNode(element, l);
 }
 }

首先判断要插入的index是否在范围内,在的话,再执行后续的add操作。如果要插入的index刚好是最后一位,则执行上面讲的addAtLast,如果不是,则得到index所对应的Node元素,执行addBeforeNode。

获取index所对应的Node元素,是node方法,代码如下:

 private Node<E> node(int index) {
 if (index < (size << 1)) {
 Node<E> cursor = first;
 for (int i = 0; i < index; i++) {
 cursor = cursor.next;
 }
 return cursor;
 } else {
 Node<E> cursor = last;
 for (int i = size - 1; i > index; i--) {
 cursor = cursor.prev;
 }
 return cursor;
 }
 }

这里的查找采用二分查找,节省查找时间,而且也应用到了双向链表的特点。首先判断index在前一半的范围内,还是后一半的范围内。如果是前一半,则游标Node初始为first,用游标Node元素的next,不断指向index所在的元素。如果是后一半,则游标Node初始为last,用游标Node元素的prev,不断指向index所在的元素。

在指定元素的前面插入新节点的addBeforeNode的方法如下:

 private void addBeforeNode(E element, Node<E> specifiedNode) {
 Node<E> preNode = specifiedNode.prev;
 Node<E> newNode = new Node<>(element, specifiedNode, preNode);
 if (preNode == null) {
 first = newNode;
 } else {
 preNode.next = newNode;
 }
 specifiedNode.prev = newNode;
 size++;
 }

插入的方式很简单,新节点的prev是原index元素的prev,新节点的next是原index元素。剩下的操作是把该node放到链表中,让原index元素的prev的next为新节点,但是要判断preNode是不是空,是的话,表示newNode为第一个元素,就是first。

至此,一个add方法,就实现完了。

get方法

get方法在有了上述node方法之后,就非常的简单。代码如下:

 public E get(int index) {
 checkRange(index);
 return node(index).item;
 }

checkRange检查index是否不在范围内。

 private void checkRange(int index) {
 if (index >= size || index < 0) {
 throw new IndexOutOfBoundsException("指定index超过界限");
 }
 }

indexOf方法

indexOf(Object o)用来得到指定元素的下标。

 public int indexOf(Object element) {
 Node<E> cursor = first;
 int count = 0;
 while (cursor != null) {
 if (element != null) {
 if (element.equals(cursor.item)) {
  return count;
 }
 }else{
 if (cursor.item == null) {
  return count;
 }
 }
 count ++;
 cursor = cursor.next;
 }
 return -1;
 }

与ArrayList一样,从第一位开始查找,首先先判断element是不是null,分成两种情况。

remove方法

remove方法与add方法一样,同样有两个重载的方法,remove(Object o)与remove(int index)

先看简单的remove(int index)方法,代码如下:

 public E remove(int index) {
 checkRange(index);
 return deleteLink(index);
 }

deleteLink是将该index所对应的节点的链接删除的方法,其代码如下:

 private E deleteLink(int index) {
 Node<E> l = node(index);
 E item = l.item;
 Node<E> prevNode = l.prev;
 Node<E> nextNode = l.next;
 if (prevNode == null) {
 first = nextNode;
 }else{
 prevNode.next = nextNode;
 l.next = null;
 }
 if (nextNode == null) {
 last = prevNode;
 }else{
 nextNode.prev = prevNode;
 l.prev = null;
 }
 size--;
 l.item = null;
 return item;
 }

首先获得该index对应的Node元素,得到该Node元素的前一个元素和后一个元素。接下来,只需要将前一个元素和后一个元素直接相连即可,其他只需要额外判断前一个元素和后一个元素是否为null就行。在判断前一个元素是否为null的时候,只需要操作前一个元素,在判断后一个元素是否为null的时候,也只需要操作后一个元素。最后,将要删除的元素各个引用至为null。

remove另一个重载方法remove(Object o),在实现了indexOf和deleteLink方法之后,就非常简单。

 public boolean remove(Object o) {
 int index = indexOf(o);
 if (index < 0){
 return false;
 }
 deleteLink(index);
 return true;
 }

获取该元素对应对应的下标,然后执行deleteLink方法,完成remove操作。

总结

至此,一个功能简单的LinkedList就实现完成了,全部的代码可以看源码地址

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持我们!

(0)

相关推荐

  • java LinkedList的实例详解

    java LinkedList的实例详解 站在Java的角度看,玩队列不就是玩对象引用对象嘛! 实例代码: public class LinkedList<E> implements List<E>, Deque<E> { Node<E> first; Node<E> last; int size; public boolean add(E e) { final Node<E> l = last; final Node<E>

  • Java中ArrayList和LinkedList的遍历与性能分析

    前言 通过本文你可以了解List的五种遍历方式及各自性能和foreach及Iterator的实现,加深对ArrayList和LinkedList实现的了解.下面来一起看看吧. 一.List的五种遍历方式 1.for each循环 List<Integer> list = new ArrayList<Integer>(); for (Integer j : list) { // use j } 2.显示调用集合迭代器 List<Integer> list = new Ar

  • 分析Java中ArrayList与LinkedList列表结构的源码

    一.ArrayList源码分析(JDK7) ArrayList内部维护了一个动态的Object数组,ArrayList的动态增删就是对这个对组的动态的增加和删除. 1.ArrayList构造以及初始化 ArrayList实例变量 //ArrayList默认容量 private static final int DEFAULT_CAPACITY = 10; //默认空的Object数组, 用于定义空的ArrayList private static final Object[] EMPTY_ELE

  • 解析Java中的队列和用LinkedList集合模拟队列的方法

    API中对队列的说明: public interface Queue<E> extends Collection<E> 在处理元素前用于保存元素的 collection.除了基本的 Collection 操作外,队列还提供其他的插入.提取和检查操作.每个方法都存在两种形式:一种抛出异常(操作失败时),另一种返回一个特殊值(null 或 false,具体取决于操作).插入操作的后一种形式是用于专门为有容量限制的 Queue 实现设计的:在大多数实现中,插入操作不会失败. 队列通常(但

  • 浅谈 java中ArrayList、Vector、LinkedList的区别联系

    以前面试的时候经常会碰到这样的问题.,叫你写一下ArrayList.LinkedList.Vector三者之间的区别与联系:原先一直搞不明白,不知道这三者之间到底有什么区别?哎,惭愧,基础太差啊,木有办法啊委屈 现在得去说说这三者之间的区别与联系了:这三者都是实现了List接口,都拥有List接口里面定义的方法,并且同时拥有Collection接口的方法: ArrayList:采用的是数组的方式进行存储数据的,查询和修改速度快,但是增加和删除速度慢:线程是不同步 LinkedList:采用的是链

  • Java集合框架LinkedList详解及实例

    Java集合框架LinkedList详解 LinkedList定义 package java.util; public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable{ transient int size = 0; transient Node<E> first;

  • JAVA LinkedList和ArrayList的使用及性能分析

    第1部分 List概括List的框架图List 是一个接口,它继承于Collection的接口.它代表着有序的队列.AbstractList 是一个抽象类,它继承于AbstractCollection.AbstractList实现List接口中除size().get(int location)之外的函数.AbstractSequentialList 是一个抽象类,它继承于AbstractList.AbstractSequentialList 实现了"链表中,根据index索引值操作链表的全部函数

  • java LinkedList类详解及实例代码

    java  LinkedList类详解 LinkedList的特有功能 A:添加功能 public void addFirst(Object e); public void addLast(Object e); B:特有功能 public Object getFirst(); public Object getLast(); C:删除功能 public Object removeFirst(); public Object removeLast(); 实例代码: import java.util

  • 如何实现Java中一个简单的LinkedList

    LinkedList与ArrayList都是List接口的具体实现类.LinkedList与ArrayList在功能上也是大体一致,但是因为两者具体的实现方式不一致,所以在进行一些相同操作的时候,其效率也是有差别的. 对于抽象的数据结构--线性表而言,线性表分为两种,一种是顺序存储结构的顺序表,另一种是通过指针来描述其逻辑位置的链表. 针对于具体的Java实现: 顺序存储的顺序表是用数组来实现的,以数组为基础进行封装各种操作而形成的List为ArrayList 链表是用指针来描述其逻辑位置,在J

  • java 中 zookeeper简单使用

    一.zookeeper的基本原理 数据模型,如下: ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode.每个ZNode都可以通过其路径唯一标识,比如上图中第三层的第一个ZNode,它的路径是/app1/c1.在每个ZNode上可存储少量数据(默认是1M, 可以通过配置修改,通常不建议在ZNode上存储大量的数据),这个特性非常有用.另外,每个ZNode上还存储了其Acl信息,这里需要注意,虽说ZNode的树形结构跟Unix文件系统很类似,

  • Java实现一个简单的定时器代码解析

    定时的功能我们在手机上见得比较多,比如定时清理垃圾,闹钟,等等.定时功能在java中主要使用的就是Timer对象,他在内部使用的就是多线程的技术. Time类主要负责完成定时计划任务的功能,就是在指定的时间的开始执行某个任务. Timer类的作用是设置计划任务,而封装任务内容的类是TimerTask类.此类是一个抽象类,继承需要实现一个run方法. 利用java制作定时器比较简单,有现成的接口帮助实现.java中制作定时器使用的是Timer和TimerTask,是util包的.java.util

  • Java中闭包简单代码示例

    一.闭包的定义. 有很多不同的人都对闭包过进行了定义,这里收集了一些. # 是引用了自由变量的函数.这个函数通常被定义在另一个外部函数中,并且引用了外部函数中的变量. -- <<wikipedia>> # 是一个可调用的对象,它记录了一些信息,这些信息来自于创建它的作用域.-- <<Java编程思想>> # 是一个匿名的代码块,可以接受参数,并返回一个返回值,也可以引用和使用在它周围的,可见域中定义的变量.-- Groovy ['ɡru:vi] # 是一个表

  • java实现一个简单的Web服务器实例解析

    Web服务器也称为超文本传输协议服务器,使用http与其客户端进行通信,基于java的web服务器会使用两个重要的类, java.net.Socket类和java.net.ServerSocket类,并基于发送http消息进行通信. 这个简单的Web服务器会有以下三个类: *HttpServer *Request *Response 应用程序的入口在HttpServer类中,main()方法创建一个HttpServer实例,然后调用其await()方法,顾名思义,await()方法会在指定端口上

  • Java实现一个简单的文件上传案例示例代码

    Java实现一个简单的文件上传案例 实现流程: 1.客户端从硬盘读取文件数据到程序中 2.客户端输出流,写出文件到服务端 3.服务端输出流,读取文件数据到服务端中 4.输出流,写出文件数据到服务器硬盘中 下面上代码 上传单个文件 服务器端 package FileUpload; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.net.Serve

  • 区分Java中的ArrayList和LinkedList

    一:ArrayList和LinkedList的大致区别如下: 1.ArrayList是实现了基于动态数组的数据结构,ArrayList实现了长度可变的数组,在内存中分配连续的空间.遍历元素和随机访问元素的效率比较高 2.LinkedList基于链表的数据结构, 插入.删除元素时效率比较高  故:[插入.删除操作频繁时,可使用LinkedList来提高效率]LinkedList提供对头部和尾部元素进行添加和删除操作的方法,插入/删除第一个和最后一个效率比较高: 3:ArrayList和Linked

  • 教你用Java实现一个简单的代码生成器

    前言 逆向工程从数据库表直接生成代码,是日常开发中常用的敏捷开发手段,常见的例如:mybatis-plus的代码生成器等 为什么要自己写代码生成器呢?MP的生成器不香吗?香! 但是自己写的工具用起来最顺手,可以随意扩展,想怎么玩就怎么玩,只要自己有想法,玩出花来都没问题,当然了,能力有限,现在还只能实现简单版本,更多骚操作自己发挥! 思路: 1.建立jdbc连接,执行查询sql,获取表结构信息. 2.在指定的路径上创建文件. 3.按照我们的布局排版要求,根据表结构信息拼接文件的内容. 4.将字符

  • 基于Java编写一个简单的风控组件

    目录 一.背景 1.为什么要做风控 2.为什么要自己写风控 3.其它要求 二.思路 1.风控规则的实现 2.调用方式的实现 三.具体实现 1.风控计数规则实现 2.注解的实现 四.测试一下 1.写法 2.Debug看看 一.背景 1.为什么要做风控 这不得拜产品大佬所赐 目前我们业务有使用到非常多的AI能力,如ocr识别.语音测评等,这些能力往往都比较费钱或者费资源,所以在产品层面也希望我们对用户的能力使用次数做一定的限制,因此风控是必须的! 2.为什么要自己写风控 那么多开源的风控组件,为什么

  • java实现一个简单的网络爬虫代码示例

    目前市面上流行的爬虫以python居多,简单了解之后,觉得简单的一些页面的爬虫,主要就是去解析目标页面(html).那么就在想,java有没有用户方便解析html页面呢?找到了一个jsoup包,一个非常方便解析html的工具呢. 使用方式也非常简单,引入jar包: <dependency> <groupId>org.jsoup</groupId> <artifactId>jsoup</artifactId> <version>1.8.

随机推荐