java数据结构与算法之快速排序详解

本文实例讲述了java数据结构与算法之快速排序。分享给大家供大家参考,具体如下:

交换类排序的另一个方法,即快速排序。

快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进;实现了一次交换可消除多个逆序。通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

步骤:

1、从数列中挑出一个元素,称为 "基准"(pivot);
2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法实现代码如下:

package exp_sort;
public class QuickSort {
  public static void Qsort(int array[], int left, int right) {
    int pos;
    if (left < right) {
      pos = quickSort(array, left, right);
      //递归排序
      Qsort(array, left, pos - 1);
      Qsort(array, pos + 1, right);
    }
  }
  /**
   * 一趟快速排序
   *
   * @param array
   * @param left
   * @param right
   * @return
   */
  public static int quickSort(int array[], int left, int right) {
    int low, high;
    int temp = array[left]; // 选择基准记录(枢纽元)
    low = left;
    high = right;
    while (low < high) {
      // high从右到左找小于temp的记录
      while (low < high && array[high] >= temp) {
        high--;
      }
      // 找到小于temp的记录则交换
      if (low < high) {
        array[low] = array[high];
        low++;
      }
      // low从左到右找到大于temp的记录
      while (low < high && array[low] < temp) {
        low++;
      }
      // 找到大于temp的记录,则交换
      if (low < high) {
        array[high] = array[low];
        high--;
      }
    }
    //将游标放在当前位置,此时low=high
    array[low] = temp;
    return low;
  }
  public static void main(String[] args) {
    // TODO Auto-generated method stub
    int array[] = { 38, 62, 35, 77, 55, 14, 35, 98 };
    Qsort(array, 0, 7);
    for (int i = 0; i < array.length; i++) {
      System.out.print(array[i] + " ");
    }
    System.out.println("\n");
  }
}

枢纽元的选取:

1、基本的快速排序:选取地一个元素作为枢纽元。实际中应尽量避免将第一个元素作为枢纽元(极端情况是:初始状态是已排好序或者反序的)。

2、随机化快排序 :  随机的选取枢纽元。

3、平衡快排 : 三数中值分割法:枢纽元的最好选择是数组中的中值,该中值,即左端、右端和中心位置上的三个元素的中值(推荐)。

算法分析:该算法是在实践中最快的一种排序算法,它的平均运行时间是O(N log N),该算法之所以快,主要是由于非常精炼和高度优化的内部循环。它的最坏情况的性能是O(N^2),但是这种情况可以改变。快速排序是一种分治的递归算法。该算法比归并排序算法排序快。

1、最坏情况的分析

当枢纽元是最小元素时,此时就相当于是对整个数组进行递归排序,时间复杂度为:O(N^2)

2、最好情况的分析

枢纽元正好位于中间,此时是对两个子数组进行递归排序,时间复杂度是:O(N log N),这和归并排序的分析完全相同。

3、平均情况的分析

时间复杂度是:O( N log N)

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

(0)

相关推荐

  • Java数据结构之散列表(动力节点Java学院整理)

    基本概念 散列表(Hash table,也叫哈希表),是根据关键字(key value)而直接进行访问的数据结构. 说的具体点就是它通过吧key值映射到表中的一个位置来访问记录,从而加快查找的速度. 实现key值映射的函数就叫做散列函数 存放记录的数组就就叫做散列表 实现散列表的过程通常就称为散列(hashing),也就是常说的hash 散列 这里的散列的概念不仅限于数据结构了,在计算机科学领域中,散列-哈希是一种对信息的处理方法,通过某种特定的函数/算法(散列函数/hash()方法)将要检索的

  • java数据结构排序算法之归并排序详解

    本文实例讲述了java数据结构排序算法之归并排序.分享给大家供大家参考,具体如下: 在前面说的那几种排序都是将一组记录按关键字大小排成一个有序的序列,而归并排序的思想是:基于合并,将两个或两个以上有序表合并成一个新的有序表 归并排序算法:假设初始序列含有n个记录,首先将这n个记录看成n个有序的子序列,每个子序列长度为1,然后两两归并,得到n/2个长度为2(n为奇数的时候,最后一个序列的长度为1)的有序子序列.在此基础上,再对长度为2的有序子序列进行亮亮归并,得到若干个长度为4的有序子序列.如此重

  • java数据结构与算法之希尔排序详解

    本文实例讲述了java数据结构与算法之希尔排序.分享给大家供大家参考,具体如下: 这里要介绍的是希尔排序(缩小增量排序法). 希尔排序:通过比较相距一定间隔的元素来工作:各趟比较所用的距离(增量)随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止.是插入排序的一种,是针对直接插入排序算法的改进. 算法思想:先将要排序的序列按某个增量d分成若干个子序列,对每个子序列中全部元素分别进行直接插入排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序.当增量减到1时,整个要排序的数被分成一

  • 浅析Java 数据结构常用接口与类

    Java工具包提供了强大的数据结构.在Java中的数据结构主要包括以下几种接口和类: 枚举(Enumeration) 位集合(BitSet) 向量(Vector) 栈(Stack) 字典(Dictionary) 哈希表(Hashtable) 属性(Properties) 以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collection),我们后面再讨论. 枚举(Enumeration) 枚举(Enumeration)接口虽然它本身不属于数据结构,但它在其他数据结构的范畴里

  • java数据结构与算法之插入排序详解

    本文实例讲述了java数据结构与算法之插入排序.分享给大家供大家参考,具体如下: 复习之余,就将数据结构中关于排序的这块知识点整理了一下,写下来是想与更多的人分享,最关键的是做一备份,为方便以后查阅. 排序 1.概念: 有n个记录的序列{R1,R2,.......,Rn}(此处注意:1,2,n 是下表序列,以下是相同的作用),其相应关键字的序列是{K1,K2,.........,Kn}.通过排序,要求找出当前下标序列1,2,......,n的一种排列p1,p2,........pn,使得相应关键

  • Java数据结构之图(动力节点Java学院整理)

    1,摘要: 本文章主要讲解学习如何使用JAVA语言以邻接表的方式实现了数据结构---图(Graph).从数据的表示方法来说,有二种表示图的方式:一种是邻接矩阵,其实是一个二维数组:一种是邻接表,其实是一个顶点表,每个顶点又拥有一个边列表.下图是图的邻接表表示. 从图中可以看出,图的实现需要能够表示顶点表,能够表示边表.邻接表指是的哪部分呢?每个顶点都有一个邻接表,一个指定顶点的邻接表中,起始顶点表示边的起点,其他顶点表示边的终点.这样,就可以用邻接表来实现边的表示了.如顶点V0的邻接表如下: 与

  • Java常见基本数据结构概览

    Java数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等等的学科.在Java数据结构中最常用的类型无外乎以下几种: Map接口 请注意,Map没有继承Collection接口,Map提供key到value的映射.一个Map中不能包含相同的key,每个key只能映射一个value. Map接口提供3种集合的视图,Map的内容可以被当作一组key集合,一组value集合,或者一组key-value映射. List接口 List是有序的Collection,用户能

  • java数据结构与算法之快速排序详解

    本文实例讲述了java数据结构与算法之快速排序.分享给大家供大家参考,具体如下: 交换类排序的另一个方法,即快速排序. 快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进:实现了一次交换可消除多个逆序.通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 步骤: 1.从数列中挑出一个元素,称为 "基准"(piv

  • java数据结构与算法之冒泡排序详解

    本文实例讲述了java数据结构与算法之冒泡排序.分享给大家供大家参考,具体如下: 前面文章讲述的排序算法都是基于插入类的排序,这篇文章开始介绍交换类的排序算法,即:冒泡排序.快速排序(冒泡排序的改进). 交换类的算法:通过交换逆序元素进行排序的方法. 冒泡排序:反复扫描待排序记录序列,在扫描的过程中,顺次比较相邻的两个元素的大小,若逆序就交换位置. 算法实现代码如下: package exp_sort; public class BubbleSort { public static void b

  • Python实现的数据结构与算法之快速排序详解

    本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中

  • Java数据结构与算法入门实例详解

    第一部分:Java数据结构 要理解Java数据结构,必须能清楚何为数据结构? 数据结构: Data_Structure,它是储存数据的一种结构体,在此结构中储存一些数据,而这些数据之间有一定的关系. 而各数据元素之间的相互关系,又包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构. 而一个数据结构的设计过程分成抽象层.数据结构层和实现层. 数据结构在Java的语言体系中按逻辑结构可以分为两大类:线性数据结构和非线性数据结构. 一.Java数据结构之:线性数据结构 线性数据结构:常见的

  • Java 数据结构之时间复杂度与空间复杂度详解

    目录 算法效率 时间复杂度 什么是时间复杂度 推导大 O 阶的方法 算法情况 计算冒泡排序的时间复杂度 计算二分查找的时间复杂度 计算阶乘递归的时间复杂度 计算斐波那契递归的时间复杂度 空间复杂度 计算冒泡排序的空间复杂度 计算斐波那契数列的空间复杂度(非递归) 计算阶乘递归Factorial的时间复杂度 算法效率 在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度).时间复杂度是指程序运行的速度.空间复杂度是指一个算法所需要的额外的空间. 时间复杂度 什么是时间

  • Java数据结构之平衡二叉树的实现详解

    目录 定义 结点结构 查找算法 插入算法 LL 型 RR 型 LR 型 RL 型 插入方法 删除算法 概述 实例分析 代码 完整代码 定义 动机:二叉查找树的操作实践复杂度由树高度决定,所以希望控制树高,左右子树尽可能平衡. 平衡二叉树(AVL树):称一棵二叉查找树为高度平衡树,当且仅当或由单一外结点组成,或由两个子树形 Ta 和 Tb 组成,并且满足: |h(Ta) - h(Tb)| <= 1,其中 h(T) 表示树 T 的高度 Ta 和 Tb 都是高度平衡树 即:每个结点的左子树和右子树的高

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • Python数据结构与算法之算法分析详解

    目录 0. 学习目标 1. 算法的设计要求 1.1 算法评价的标准 1.2 算法选择的原则 2. 算法效率分析 2.1 大O表示法 2.2 常见算法复杂度 2.3 复杂度对比 3. 算法的存储空间需求分析 4. Python内置数据结构性能分析 4.1 列表性能分析 4.2 字典性能分析 0. 学习目标 我们已经知道算法是具有有限步骤的过程,其最终的目的是为了解决问题,而根据我们的经验,同一个问题的解决方法通常并非唯一.这就产生一个有趣的问题:如何对比用于解决同一问题的不同算法?为了以合理的方式

随机推荐