NumPy实现ndarray多维数组操作

简介

NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray。我们可以在ndarray的基础上进行一系列复杂的数学运算。

本文将会介绍一些基本常见的ndarray操作,大家可以在数据分析中使用。

创建ndarray

创建ndarray有很多种方法,我们可以使用np.random来随机生成数据:

import numpy as np
# Generate some random data
data = np.random.randn(2, 3)
data
array([[ 0.0929,  0.2817,  0.769 ],
       [ 1.2464,  1.0072, -1.2962]])

除了随机创建之外,还可以从list中创建:

data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
array([6. , 7.5, 8. , 0. , 1. ])

从list中创建多维数组:

data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])

使用np.zeros创建初始值为0的数组:

np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

创建2维数组:

np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]])

使用empty创建3维数组:

np.empty((2, 3, 2))
array([[[0., 0.],
        [0., 0.],
        [0., 0.]],

       [[0., 0.],
        [0., 0.],
        [0., 0.]]])

注意,这里我们看到empty创建的数组值为0,其实并不是一定的,empty会从内存中随机挑选空间来返回,并不能保证这些空间中没有值。所以我们在使用empty创建数组之后,在使用之前,还要记得初始化他们。

使用arange创建范围类的数组:

np.arange(15)
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

指定数组中元素的dtype:

arr1 = np.array([1, 2, 3], dtype=np.float64)
arr2 = np.array([1, 2, 3], dtype=np.int32)

ndarray的属性

可以通过data.shape获得数组的形状。

data.shape
(2, 3)

通过ndim获取维数信息:

arr2.ndim
2

可以通过data.dtype获得具体的数据类型。

data.dtype
dtype('float64')

ndarray中元素的类型转换

在创建好一个类型的ndarray之后,还可以对其进行转换:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
dtype('int64')

float_arr = arr.astype(np.float64)
float_arr.dtype
dtype('float64')

上面我们使用astype将int64类型的ndarray转换成了float64类型的。

如果转换类型的范围不匹配,则会自动进行截断操作:

arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
arr.astype(np.int32)

array([ 3, -1, -2,  0, 12, 10], dtype=int32)

注意,这里是把小数截断,并没有向上或者向下取整。

ndarray的数学运算

数组可以和常量进行运算,也可以和数组进行运算:

arr = np.array([[1., 2., 3.], [4., 5., 6.]])

arr * arr

array([[ 1.,  4.,  9.],
       [16., 25., 36.]])

arr + 10

array([[11., 12., 13.],
       [14., 15., 16.]])

arr - arr

array([[0., 0., 0.],
       [0., 0., 0.]])

1 / arr

array([[1.    , 0.5   , 0.3333],
       [0.25  , 0.2   , 0.1667]])

arr ** 0.5

array([[1.    , 1.4142, 1.7321],
       [2.    , 2.2361, 2.4495]])

数组之间还可以进行比较,比较的是数组中每个元素的大小:

arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

arr2 > arr

array([[False,  True, False],
       [ True, False,  True]])

index和切片

基本使用

先看下index和切片的基本使用,index基本上和普通数组的使用方式是一样的,用来访问数组中某一个元素。

切片要注意的是切片后返回的数组中的元素是原数组中元素的引用,修改切片的数组会影响到原数组。

# 构建一维数组
arr = np.arange(10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

# index访问
arr[5]
5

# 切片访问
arr[5:8]
array([5, 6, 7])

# 切片修改
arr[5:8] = 12
array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])

# 切片可以修改原数组的值
arr_slice = arr[5:8]
arr_slice[1] = 12345
arr

array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,
           9])

# 构建二维数组
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr2d[2]

array([7, 8, 9])

# index 二维数组
arr2d[0][2]
3

# index二维数组
arr2d[0, 2]
3

# 构建三维数组
arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
arr3d

array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[ 7,  8,  9],
        [10, 11, 12]]])

# index三维数组
arr3d[0]

array([[1, 2, 3],
       [4, 5, 6]])

# copy是硬拷贝,和原数组的值相互不影响
old_values = arr3d[0].copy()
arr3d[0] = 42

arr3d

array([[[42, 42, 42],
        [42, 42, 42]],

       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0] = old_values
arr3d

array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[ 7,  8,  9],
        [10, 11, 12]]])

# index 三维数组
arr3d[1, 0]

array([7, 8, 9])

x = arr3d[1]
x

array([[ 7,  8,  9],
       [10, 11, 12]])

x[0]

array([7, 8, 9])

index with slice

slice还可以作为index使用,作为index使用表示的就是一个index范围值。

作为index表示的slice可以有多种形式。

有头有尾的,表示index从1开始到6-1结束:

arr[1:6]
array([ 1,  2,  3,  4, 64])

无头有尾的,表示index从0开始,到尾-1结束:

arr2d[:2]
array([[1, 2, 3],
       [4, 5, 6]])

有头无尾的,表示从头开始,到所有的数据结束:

arr2d[:2, 1:]
array([[2, 3],
       [5, 6]])
arr2d[1, :2]
array([4, 5])

boolean index

index还可以使用boolean值,表示是否选择这一个index的数据。

我们先看下怎么构建一个boolean类型的数组:

names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
names == 'Bob'

array([ True, False, False,  True, False, False, False])

上面我们通过比较的方式返回了一个只包含True和False的数组。

这个数组可以作为index值来访问数组:

#  构建一个7 * 4 的数组
data = np.random.randn(7, 4)

array([[ 0.275 ,  0.2289,  1.3529,  0.8864],
       [-2.0016, -0.3718,  1.669 , -0.4386],
       [-0.5397,  0.477 ,  3.2489, -1.0212],
       [-0.5771,  0.1241,  0.3026,  0.5238],
       [ 0.0009,  1.3438, -0.7135, -0.8312],
       [-2.3702, -1.8608, -0.8608,  0.5601],
       [-1.2659,  0.1198, -1.0635,  0.3329]])

# 通过boolean数组来访问:
data[names == 'Bob']
array([[ 0.275 ,  0.2289,  1.3529,  0.8864],
       [-0.5771,  0.1241,  0.3026,  0.5238]])

在索引行的时候,还可以索引列:

data[names == 'Bob', 3]
array([0.8864, 0.5238])

可以用 ~符号来取反:

data[~(names == 'Bob')]
array([[-2.0016, -0.3718,  1.669 , -0.4386],
       [-0.5397,  0.477 ,  3.2489, -1.0212],
       [ 0.0009,  1.3438, -0.7135, -0.8312],
       [-2.3702, -1.8608, -0.8608,  0.5601],
       [-1.2659,  0.1198, -1.0635,  0.3329]])

我们可以通过布尔型数组设置值,在实际的项目中非常有用:

data[data < 0] = 0
array([[0.275 , 0.2289, 1.3529, 0.8864],
       [0.    , 0.    , 1.669 , 0.    ],
       [0.    , 0.477 , 3.2489, 0.    ],
       [0.    , 0.1241, 0.3026, 0.5238],
       [0.0009, 1.3438, 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.5601],
       [0.    , 0.1198, 0.    , 0.3329]])

data[names != 'Joe'] = 7
array([[7.    , 7.    , 7.    , 7.    ],
       [0.    , 0.    , 1.669 , 0.    ],
       [7.    , 7.    , 7.    , 7.    ],
       [7.    , 7.    , 7.    , 7.    ],
       [7.    , 7.    , 7.    , 7.    ],
       [0.    , 0.    , 0.    , 0.5601],
       [0.    , 0.1198, 0.    , 0.3329]])

Fancy indexing

Fancy indexing也叫做花式索引,它是指使用一个整数数组来进行索引。

举个例子,我们先创建一个 8 * 4的数组:

arr = np.empty((8, 4))
for i in range(8):
    arr[i] = i
arr
array([[0., 0., 0., 0.],
       [1., 1., 1., 1.],
       [2., 2., 2., 2.],
       [3., 3., 3., 3.],
       [4., 4., 4., 4.],
       [5., 5., 5., 5.],
       [6., 6., 6., 6.],
       [7., 7., 7., 7.]])

然后使用一个整数数组来索引,那么将会以指定的顺序来选择行:

arr[[4, 3, 0, 6]]
array([[4., 4., 4., 4.],
       [3., 3., 3., 3.],
       [0., 0., 0., 0.],
       [6., 6., 6., 6.]])

还可以使用负值来索引:

arr[[-3, -5, -7]]
array([[5., 5., 5., 5.],
       [3., 3., 3., 3.],
       [1., 1., 1., 1.]])

花式索引还可以组合来使用:

arr = np.arange(32).reshape((8, 4))
arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

上面我们构建了一个8 * 4的数组。

arr[[1, 5, 7, 2], [0, 3, 1, 2]]
array([ 4, 23, 29, 10])

然后取他们的第2列的第一个值,第6列的第三个值等等。最后得到一个1维的数组。

数组变换

我们可以在不同维度的数组之间进行变换,还可以转换数组的轴。

reshape方法可以将数组转换成为任意的形状:

arr = np.arange(15).reshape((3, 5))
arr
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

数组还提供了一个T命令,可以将数组的轴进行对调:

arr.T
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

对于高维数组,可以使用transpose来进行轴的转置:

arr = np.arange(16).reshape((2, 2, 4))
arr
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],

       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

arr.transpose((1, 0, 2))
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],

       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])

上面的transpose((1, 0, 2)) 怎么理解呢?

其含义是将x,y轴对调,z轴保持不变。

上面我们通过使用reshape((2, 2, 4))方法创建了一个3维,也就是3个轴的数组。 其shape是 2 * 2 * 4 。

先看下对应关系:

(0,0)-》 [ 0, 1, 2, 3]

(0,1)-》 [ 4, 5, 6, 7]

(1,0)-》 [ 8, 9, 10, 11]

(1,1)-》 [12, 13, 14, 15]

转换之后:

(0,0)-》 [ 0, 1, 2, 3]

(0,1)-》 [ 8, 9, 10, 11]

(1,0)-》[ 4, 5, 6, 7]

(1,1)-》 [12, 13, 14, 15]

于是得到了我们上面的的结果。

多维数组的轴转换可能比较复杂,大家多多理解。

还可以使用 swapaxes 来交换两个轴,上面的例子可以重写为:

arr.swapaxes(0,1)

到此这篇关于NumPy实现ndarray多维数组操作的文章就介绍到这了,更多相关NumPy ndarray多维数组操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Numpy ndarray 多维数组对象的使用

    介绍 目前它是Python数值计算中最为重要的基础包,将numpy的数组的对象作为数据交互的通用语,一般我们要充分理解好矩阵计算的原理,这需要你要有一些线性代数的基础知识.在对数据处理.清洗.构造子集.过滤.变换以及其他计算的过程快速的进行向量化计算,后续也会介绍R语言,因为R语言就是一个原生态基于向量化计算的编程语言. Numpy的核心特征之一就是一个N维数组对象--ndarray,这是一个快速灵活的大型数据集容器,可以进行科学数值计算. 代码操作 import numpy as np 导入好

  • 如何在向量化NumPy数组上进行移动窗口

    今天很有可能你已经做了一些使用滑动窗口(也称为移动窗口)的事情,而你甚至不知道它.例如:许多编辑算法都是基于移动窗口的. 在GIS中做地形分析的大多数地形栅格度量(坡度.坡向.山坡阴影等)都基于滑动窗口.很多情况下,对格式化为二维数组的数据进行分析时,都很有可能涉及到滑动窗口. 滑动窗口操作非常普遍,非常有用.它们也很容易在Python中实现.学习如何实现移动窗口将把你的数据分析和争论技能提升到一个新的水平. 什么是滑动窗? 下面的例子显示了一个3×3(3×3)滑动窗口.用红色标注的数组元素是目

  • python 将numpy维度不同的数组相加相乘操作

    第一种 np矩阵可以直接与标量运算 >>>import numpy as np >>>arr1 = np.arange(12).reshape([2,2,3]) >>>arr1 array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]]]) >>>arr1*5 array([[[ 0, 5, 10], [15, 20, 25]], [[30, 35, 40], [45, 50

  • 在NumPy中创建空数组/矩阵的方法

    如何在NumPy中创建空数组/矩阵? 在添加行的情况下,你最好的选择是创建一个与数据集最终一样大的数组,然后向它添加数据 row-by-row: >>> import numpy >>> a = numpy.zeros(shape=(5,2)) >>> a array([[ 0., 0.], [ 0., 0.], [ 0., 0.], [ 0., 0.], [ 0., 0.]]) >>> a[0] = [1,2] >>&g

  • Python 用NumPy创建二维数组的案例

    前言 上位机实战开发先放一放,今天来学习一个新的内容-NumPy的使用 1 一维数组 例:用普通方法生成一维数组 num = [0 for i in range(1,5)] # 创建一维数组 print(num) # 打印数组 print("-"*50) # 分割线 num[2]=6 # 将第三个元素修改位6 print(num) # 打印数组 print("-"*50) # 分割线 运行结果 例:用numpy生成一维数组 from numpy import * m

  • Numpy将二维数组添加到空数组的实现

    使用append函数将一个二维数组添加到一个空数组,关键是维度要对的上 a=np.empty([0,3]) b = np.array([[1,2,3],[4,5,6]]) c=[[7,8,9]] print(a.shape) print(b.shape) a = np.append(a, b, axis=0) a = np.append(a, c, axis=0) print(a.shape) print(b.shape) 以上这篇Numpy将二维数组添加到空数组的实现就是小编分享给大家的全部内

  • 如何将numpy二维数组中的np.nan值替换为指定的值

    基础知识: (1)np.nan表示该值不是一个数,比如数据中收入.年龄的缺失值:np.inf表示无穷大 (2)np.nan == np.nan 的结果为False (3)nan与任何数的操作结果均为nan,例如sum((np.nan,4)) 的结果为nan (4)一个ndarray数组t1,可以用np.isnan(t1) 定位到nan值的位置,再用t1[np.isnan(t1)] = 指定值 将nan替换为指定值 (5)np.nan_to_num(t1),可以将t1中的nan替换为0 (6)t1

  • 浅谈Python numpy创建空数组的问题

    一.问题描述: 有一个shape为(308, 2)的二维数组,以及单独的一个数字,需要保存到csv文件中,这个单独的数字让其保存到第3列第一行的位置. 二.具体的实现: 首先要想把一个(308, 2)的二维数组和一个数字给拼接起来,直接拼接没办法实现,因为行数和列数都不同的两个ndarry是无法拼接的(此处按照目前我学的理解,是无法直接拼接的,如果可以的话,麻烦评论一下). 然后我首先想到的解决方法就是先建一个(308,1)的二维数组,然后令这个二维数组的第一个元素设置成那个数字,然后进行拼接,

  • 解决numpy数组互换两行及赋值的问题

    看代码吧~ import numpy as np a = np.array([[1,1,1],[2,2,2],[3,3,3], [4,4,4]]) tmp = a[1] a[1] = a[2] a[2] = tmp tmp只是a[1]的另一个名字,它并不是将a[1]复制了之后,就与a[1]无关,或许可理解为一种引用.所以这段代码的效果并不能如愿互换原始a数组的第2行和第三行,而是会将2,3行都变成原来的第三行[3,3,3],像这样: array([[1, 1, 1], [3, 3, 3], [3

  • numpy 声明空数组详解

    你搜索这个,你会发现好多都是np.zeros(5,2),嗯都是复制的一个国外的帖子,然而没有翻译人家的话. 然后你愤怒的关闭页面.这简直就是文不对题,这哪是空的. 实际上,numpy的数组机制并不支持空数组.(什么鬼答案?)简单来讲就是numpy会申请连续的内存,如果频繁改变大小,他就要频繁申请新的内存.如果你会c语言知道指针的话,你很容易就能想到他不是list格式而是array格式. 如果你不会c语言,那么也没有关系.不影响.只需要记住,numpy的数组一旦变动大小就会像搬家一样大包小包的带着

  • python numpy.power()数组元素求n次方案例

    如下所示: numpy.power(x1, x2) 数组的元素分别求n次方.x2可以是数字,也可以是数组,但是x1和x2的列数要相同. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.

随机推荐