pytorch固定BN层参数的操作

背景:

基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同。

原因:

未固定主分支BN层中的running_mean和running_var。

解决方法:

将需要固定的BN层状态设置为eval。

问题示例:

环境:torch:1.7.0

# -*- coding:utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.bn1 = nn.BatchNorm2d(6)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.bn2 = nn.BatchNorm2d(16)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 5)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.bn1(self.conv1(x))), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.bn2(self.conv2(x))), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

def print_parameter_grad_info(net):
    print('-------parameters requires grad info--------')
    for name, p in net.named_parameters():
        print(f'{name}:\t{p.requires_grad}')

def print_net_state_dict(net):
    for key, v in net.state_dict().items():
        print(f'{key}')

if __name__ == "__main__":
    net = Net()

    print_parameter_grad_info(net)
    net.requires_grad_(False)
    print_parameter_grad_info(net)

    torch.random.manual_seed(5)
    test_data = torch.rand(1, 1, 32, 32)
    train_data = torch.rand(5, 1, 32, 32)

    # print(test_data)
    # print(train_data[0, ...])
    for epoch in range(2):
        # training phase, 假设每个epoch只迭代一次
        net.train()
        pre = net(train_data)
        # 计算损失和参数更新等
        # ....

        # test phase
        net.eval()
        x = net(test_data)
        print(f'epoch:{epoch}', x)

运行结果:

-------parameters requires grad info--------
conv1.weight: True
conv1.bias: True
bn1.weight: True
bn1.bias: True
conv2.weight: True
conv2.bias: True
bn2.weight: True
bn2.bias: True
fc1.weight: True
fc1.bias: True
fc2.weight: True
fc2.bias: True
fc3.weight: True
fc3.bias: True
-------parameters requires grad info--------
conv1.weight: False
conv1.bias: False
bn1.weight: False
bn1.bias: False
conv2.weight: False
conv2.bias: False
bn2.weight: False
bn2.bias: False
fc1.weight: False
fc1.bias: False
fc2.weight: False
fc2.bias: False
fc3.weight: False
fc3.bias: False
epoch:0 tensor([[-0.0755, 0.1138, 0.0966, 0.0564, -0.0224]])
epoch:1 tensor([[-0.0763, 0.1113, 0.0970, 0.0574, -0.0235]])

可以看到:

net.requires_grad_(False)已经将网络中的各参数设置成了不需要梯度更新的状态,但是同样的测试数据test_data在不同epoch中前向之后出现了不同的结果。

调用print_net_state_dict可以看到BN层中的参数running_mean和running_var并没在可优化参数net.parameters中

bn1.weight
bn1.bias
bn1.running_mean
bn1.running_var
bn1.num_batches_tracked

但在training pahse的前向过程中,这两个参数被更新了。导致整个网络在freeze的情况下,同样的测试数据出现了不同的结果

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a defaultmomentumof 0.1. source

因此在training phase时对BN层显式设置eval状态:

if __name__ == "__main__":
    net = Net()
    net.requires_grad_(False)

    torch.random.manual_seed(5)
    test_data = torch.rand(1, 1, 32, 32)
    train_data = torch.rand(5, 1, 32, 32)

    # print(test_data)
    # print(train_data[0, ...])
    for epoch in range(2):
        # training phase, 假设每个epoch只迭代一次
        net.train()
        net.bn1.eval()
        net.bn2.eval()
        pre = net(train_data)
        # 计算损失和参数更新等
        # ....

        # test phase
        net.eval()
        x = net(test_data)
        print(f'epoch:{epoch}', x)

可以看到结果正常了:

epoch:0 tensor([[ 0.0944, -0.0372, 0.0059, -0.0625, -0.0048]])
epoch:1 tensor([[ 0.0944, -0.0372, 0.0059, -0.0625, -0.0048]])

补充:pytorch---之BN层参数详解及应用(1,2,3)(1,2)?

BN层参数详解(1,2)

一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层(对于BN层测试的均值和方差是通过统计训练的时候所有的batch的均值和方差的平均值)或者Dropout层(对于Dropout层在测试的时候所有神经元都是激活的)。通常用model.train()指定当前模型model为训练状态,model.eval()指定当前模型为测试状态。

同时,BN的API中有几个参数需要比较关心的,一个是affine指定是否需要仿射,还有个是track_running_stats指定是否跟踪当前batch的统计特性。容易出现问题也正好是这三个参数:trainning,affine,track_running_stats。

其中的affine指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False则γ=1,β=0 \gamma=1,\beta=0γ=1,β=0,并且不能学习被更新。一般都会设置成affine=True。(这里是一个可学习参数)

trainning和track_running_stats,track_running_stats=True表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性(意思就是说新的batch依赖于之前的batch的均值和方差这里使用momentum参数,参考了指数移动平均的算法EMA)。相反的,如果track_running_stats=False那么就只是计算当前输入的batch的统计特性中的均值和方差了。当在推理阶段的时候,如果track_running_stats=False,此时如果batch_size比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。

应用技巧:(1,2)

通常pytorch都会用到optimizer.zero_grad() 来清空以前的batch所累加的梯度,因为pytorch中Variable计算的梯度会进行累计,所以每一个batch都要重新清空一次梯度,原始的做法是下面这样的:

问题:参数non_blocking,以及pytorch的整体框架??

代码(1)

for index,data,target in enumerate(dataloader):
    data = data.cuda(non_blocking=True)
    target = torch.from_numpy(np.array(target)).float().cuda(non_blocking = Trye)
    output = model(data)
    loss = criterion(output,target)

    #清空梯度
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

而这里为了模仿minibacth,我们每次batch不清0,累积到一定次数再清0,再更新权重:

for index, data, target in enumerate(dataloader):
    #如果不是Tensor,一般要用到torch.from_numpy()
    data = data.cuda(non_blocking = True)
    target = torch.from_numpy(np.array(target)).float().cuda(non_blocking = True)
    output = model(data)
    loss = criterion(data, target)
    loss.backward()
    if index%accumulation == 0:
        #用累积的梯度更新权重
        optimizer.step()
        #清空梯度
        optimizer.zero_grad()

虽然这里的梯度是相当于原来的accumulation倍,但是实际在前向传播的过程中,对于BN几乎没有影响,因为前向的BN还是只是一个batch的均值和方差,这个时候可以用pytorch中BN的momentum参数,默认是0.1,BN参数如下,就是指数移动平均

x_new_running = (1 - momentum) * x_running + momentum * x_new_observed. momentum

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch 固定部分参数训练的方法

    需要自己过滤 optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3) 另外,如果是Variable,则可以初始化时指定 j = Variable(torch.randn(5,5), requires_grad=True) 但是如果是 m = nn.Linear(10,10) 是没有requires_grad传入的 m.requires_grad也没有 需要 for i in m.parameter

  • 浅谈pytorch中的BN层的注意事项

    最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Batch的中的数据转变成正太分布,在推理过程中使用训练过程中的参数对数据进行处理,然而网络并不知道你是在训练还是测试阶段,因此,需要手动的加上,需要在测试和训练阶段使用如下函数. model.train() or model.eval() BN类的定义见pytorch中文参考文档 补充知识:关于pyto

  • pytorch中的model.eval()和BN层的使用

    看代码吧~ class ConvNet(nn.module): def __init__(self, num_class=10): super(ConvNet, self).__init__() self.layer1 = nn.Sequential(nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2))

  • pytorch固定BN层参数的操作

    背景: 基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同. 原因: 未固定主分支BN层中的running_mean和running_var. 解决方法: 将需要固定的BN层状态设置为eval. 问题示例: 环境:torch:1.7.0 # -*- coding:utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F class

  • 可视化pytorch 模型中不同BN层的running mean曲线实例

    加载模型字典 逐一判断每一层,如果该层是bn 的 running mean,就取出参数并取平均作为该层的代表 对保存的每个BN层的数值进行曲线可视化 from functools import partial import pickle import torch import matplotlib.pyplot as plt pth_path = 'checkpoint.pth' pickle.load = partial(pickle.load, encoding="latin1")

  • python神经网络pytorch中BN运算操作自实现

    BN 想必大家都很熟悉,来自论文: <Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift> 也是面试常考察的内容,虽然一行代码就能搞定,但是还是很有必要用代码自己实现一下,也可以加深一下对其内部机制的理解. 通用公式: 直奔代码: 首先是定义一个函数,实现BN的运算操作: def batch_norm(is_training, x, gamma, beta, mo

  • pytorch神经网络之卷积层与全连接层参数的设置方法

    当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错. 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个. 全连接层的input_features是多少.首先来看一下这个简单的网络.这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解. class AlexN

  • Pytorch模型迁移和迁移学习,导入部分模型参数的操作

    1. 利用resnet18做迁移学习 import torch from torchvision import models if __name__ == "__main__": # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = 'cpu' print("-----device:{}".format(device))

  • Python深度学习pytorch神经网络汇聚层理解

    目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[

  • pytorch fine-tune 预训练的模型操作

    之一: torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易.本文主要介绍如何 fine-tune torchvision 中预训练好的模型. 安装 pip install torchvision 如何 fine-tune 以 resnet18 为例: from torchvision import models from torch import nn from torch import optim resnet_model = models.resne

  • 画pytorch模型图,以及参数计算的方法

    刚入pytorch的坑,代码还没看太懂.之前用keras用习惯了,第一次使用pytorch还有些不适应,希望广大老司机多多指教. 首先说说,我们如何可视化模型.在keras中就一句话,keras.summary(),或者plot_model(),就可以把模型展现的淋漓尽致. 但是pytorch中好像没有这样一个api让我们直观的看到模型的样子.但是有网友提供了一段代码,可以把模型画出来,对我来说简直就是如有神助啊. 话不多说,上代码吧. import torch from torch.autog

随机推荐