pytorch锁死在dataloader(训练时卡死)

1.问题描述

2.解决方案

(1)Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的Image.open来读图片。(并不适用本例)

(2)将DataLoader 里面的参变量num_workers设置为0,但会导致数据的读取很慢,拖慢整个模型的训练。(并不适用本例)

(3)如果用了cv2.imread,不想改代码的,那就加两条语句,来关闭Opencv的多线程:cv2.setNumThreads(0)和cv2.ocl.setUseOpenCL(False)。加了这两条语句之后,并不影响模型的训练。(并不适用本例)

(4)这种情况应该是属于pytorch多线程锁死,在github上看到有该问题,但是没有解决的。

参考建议

首先确保num_works数量低于CPU数量(如果使用Kubernetes,则设置为pod),但是设置得足够高,使数据随时可以用于下一次迭代。

如果GPU在t秒内运行每个迭代,而每个dataloader worker加载/处理单个批处理需要N*t秒,那么您应该将num_workers设置为至少N,以避免GPU停滞。当然,系统中至少要有N个cpu。

不幸的是,如果Dataloader使用任何使用K个线程的库,那么生成的进程数量就会变成num_workersK = NK。这可能比计算机中的cpu数量大得多。这会使pod节流,而Dataloader会变得非常慢。这可能导致Dataloader不返回批处理每t秒,导致GPU暂停。

避免K个线程的一种方法是通过OMP_NUM_THREADS=1 MKL_NUM_THREADS=1 python train.py调用主脚本。这就限制了每个Dataloader工作程序只能使用一个线程,从而避免了使机器不堪重负。你仍然需要有足够的num_workers来满足GPU的需要。

您还应该在_get_item__中优化您的代码,以便每个worker在较短的时间内完成其批处理。请确保worker完成批处理的时间不受从磁盘读取训练数据的时间(特别是当您从网络存储中读取数据时)或网络带宽(当您从网络磁盘读取数据时)的影响。如果您的数据集很小,并且您有足够的RAM,那么可以考虑将数据集移动到RAM(或/tmpfs)中,并从那里读取数据以进行快速访问。对于Kubernetes,您可以创建一个RAM磁盘(在Kubernetes中搜索emptyDir)。

如果你已经优化了你的_get_item__代码,并确保磁盘访问/网络访问不是罪魁祸首,但仍然会出现问题,你将需要请求更多的cpu(为了一个Kubernetes pod),或者将你的GPU移动到拥有更多cpu的机器上。

另一个选项是减少batch_size,这样每个worker要做的工作就会减少,并且可以更快地完成预处理。后一种选择在某些情况下是不可取的,因为会有空闲的GPU内存不被利用。

你也可以考虑离线做一些预处理,减轻每个worker的负担。例如,如果每个worker正在读取一个wav文件并计算音频文件的谱图,那么可以考虑离线预先计算谱图,只从工作者的磁盘中读取计算的谱图。这将减少每个worker的工作量。

你也可以考虑将dataloader里的设置pin_memory=False。

补充:pytorch加载训练数据集dataloader操作耗费时间太久,该如何解决?

笔者在使用pytorch加载训练数据进行模型训练的时候,发现数据加载需要耗费太多时间,该如何缩短数据加载的时间消耗呢?经过查询相关文档,

总结实际操作过程如下:

1、尽量将jpg等格式的文件保存为bmp文件,可以降低解码时间;

2、dataloader函数中增加num_workers参数,该参数表示加载数据的线程数,建议设置为该系统中的CPU核心数,若CPU很强劲,而且内存很大,也可以考虑将该数值设置的更大一些。

train_loader=torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)

修改为:

train_loader=torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True,num_workers=multiprocessing.cpu_count())

虽然使用dataloader达到了iter(Dataset)的读取并行,但是没有实现在GPU运算时异步读取数据,可以考虑使用non_blocking实现。

dataloader = data.Dataloader(dataset, batch_size = batch_size, num_workers = workers)
for epoch in range(epochs):
    for batch_idx, (images, labels) in enumerate(dataloader):
        images = images.to(device)
        labels = labels.to(device)

改为:

dataloader = data.Dataloader(dataset, batch_size = batch_size, num_workers = workers, pin_memory = True)
for epoch in range(epochs):
    for batch_idx, (images, labels) in enumerate(dataloader):
        images = images.to(device, non_blocking=True)
        labels = labels.to(device, non_blocking=True)

需要注意的是:只有pin_memory=True并且num_workers>0时non_blocking才会有效。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch dataloader 取batch_size时候出现bug的解决方式

    1. RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 342 and 281 in dimension 3 at /pytorch/aten/src/TH/generic/THTensorMoreMath.cpp:1333 2. RuntimeError: invalid argument 0: Sizes of tensors must match except i

  • PyTorch 解决Dataset和Dataloader遇到的问题

    今天在使用PyTorch中Dataset遇到了一个问题.先看代码 class psDataset(Dataset): def __init__(self, x, y, transforms = None): super(Dataset, self).__init__() self.x = x self.y = y if transforms == None: self.transforms = Compose([Resize((224, 224)), ToTensor()]) else: sel

  • 解决pytorch DataLoader num_workers出现的问题

    最近在学pytorch,在使用数据分批训练时在导入数据是使用了 DataLoader 在参数 num_workers的设置上使程序出现运行没有任何响应的结果 ,看看代码 import torch #导入模块 import torch.utils.data as Data BATCH_SIZE=8 #每一批的数据量 x=torch.linspace(1,10,10) #定义X为 1 到 10 等距离大小的数 y=torch.linspace(10,1,10) #转换成torch能识别的Datase

  • pytorch锁死在dataloader(训练时卡死)

    1.问题描述 2.解决方案 (1)Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的Image.open来读图片.(并不适用本例) (2)将DataLoader 里面的参变量num_workers设置为0,但会导致数据的读取很慢,拖慢整个模型的训练.(并不适用本例) (3)如果用了cv2.imread,不想改代码的,那就加两条语句,来关闭Opencv的多线程:cv2.

  • 记录模型训练时loss值的变化情况

    记录训练过程中的每一步的loss变化 if verbose and step % verbose == 0: sys.stdout.write('\r{} / {} : loss = {}'.format( step, total_steps, np.mean(total_loss))) sys.stdout.flush() if verbose: sys.stdout.write('\r') sys.stdout.flush() 一般我们在训练神经网络模型的时候,都是每隔多少步,输出打印一下l

  • 详解pytorch的多GPU训练的两种方式

    目录 方法一:torch.nn.DataParallel 1. 原理 2. 常用的配套代码如下 3. 优缺点 方法二:torch.distributed 1. 代码说明 方法一:torch.nn.DataParallel 1. 原理 如下图所示:小朋友一个人做4份作业,假设1份需要60min,共需要240min. 这里的作业就是pytorch中要处理的data. 与此同时,他也可以先花3min把作业分配给3个同伙,大家一起60min做完.最后他再花3min把作业收起来,一共需要66min. 这个

  • pytorch 如何使用batch训练lstm网络

    batch的lstm # 导入相应的包 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as Data torch.manual_seed(1) # 准备数据的阶段 def prepare_sequence(seq, to_ix): idxs = [to_ix[w] for w in seq] return

  • yolov5训练时参数workers与batch-size的深入理解

    目录 yolov5训练命令 workers和batch-size参数的理解 workers batch-size 两个参数的调优 总结 yolov5训练命令 python .\train.py --data my.yaml --workers 8 --batch-size 32 --epochs 100 yolov5的训练很简单,下载好仓库,装好依赖后,只需自定义一下data目录中的yaml文件就可以了.这里我使用自定义的my.yaml文件,里面就是定义数据集位置和训练种类数和名字. worke

  • Pytorch 使用Google Colab训练神经网络深度学习

    目录 学习前言 什么是Google Colab 相关链接 利用Colab进行训练 一.数据集与预训练权重的上传 1.数据集的上传 2.预训练权重的上传 二.打开Colab并配置环境 1.笔记本的创建 2.环境的简单配置 3.深度学习库的下载 4.数据集的复制与解压 5.保存路径设置 三.开始训练 1.标注文件的处理 2.训练文件的处理 3.开始训练 断线怎么办? 1.防掉线措施 2.完了还是掉线呀? 总结 学习前言 Colab是谷歌提供的一个云学习平台,Very Nice,最近卡不够用了决定去白

  • 详解如何使用Pytorch进行多卡训练

    目录 1.DP 2.DDP 2.1Pytorch分布式基础 2.2Pytorch分布式训练DEMO 当一块GPU不够用时,我们就需要使用多卡进行并行训练.其中多卡并行可分为数据并行和模型并行.具体区别如下图所示: 由于模型并行比较少用,这里只对数据并行进行记录.对于pytorch,有两种方式可以进行数据并行:数据并行(DataParallel, DP)和分布式数据并行(DistributedDataParallel, DDP). 在多卡训练的实现上,DP与DDP的思路是相似的: 1.每张卡都复制

  • PyTorch Dataset与DataLoader使用超详细讲解

    目录 一.Dataset 1. 在控制台进行操作 ①获取图片的基本信息 ②获取文件的基本信息 2. 编写一个继承Dataset 的类加载数据 ①定义 MyData类 ②创建类的实例并调用 二.DataLoader 一.Dataset Dataset 类提供一种方式去获取数据及其标签 主要有两个目的: 获取每一个数据及其标签 获取数据的总量大小 1. 在控制台进行操作 Hymenoptera (膜翅目昆虫)数据集下载地址: 链接: https://pan.baidu.com/s/1XKwXsAtE

  • Eclipse编辑jsp、js文件时卡死现象的解决办法汇总

    使用Eclipse编辑jsp.js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲.将所有用过的方法罗列如下: 1.取消验证 windows–>perferences–>validation 把 除了manual 下面的全部点掉,build下只留 classpath dependency Validator 2.关闭拼写检查 windows–>perferences–>general–> editors->

  • 在pytorch中查看可训练参数的例子

    pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的. pytorch中model.parameters()函数定义如下: def parameters(self): r"""Returns an iterator over module parameters. This is typically passed to an optimizer. Yields: Parameter: module paramete

随机推荐