TensorFlow深度学习另一种程序风格实现卷积神经网络

import tensorflow as tf
import numpy as np
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
print("MNIST ready")
n_input  = 784 # 28*28的灰度图,像素个数784
n_output = 10  # 是10分类问题
# 权重项
weights = {
    # conv1,参数[3, 3, 1, 32]分别指定了filter的h、w、所连接输入的维度、filter的个数即产生特征图个数
    'wc1': tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.1)),
    # conv2,这里参数3,3同上,32是当前连接的深度是32,即前面特征图的个数,64为输出的特征图的个数
    'wc2': tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.1)),
    # fc1,将特征图转换为向量,1024由自己定义
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024], stddev=0.1)),
    # fc2,做10分类任务,前面连1024,输出10分类
    'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))
}
"""
特征图大小计算:
f_w = (w-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 说明经过卷积层并没有改变图片的大小
f_h = (h-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28
# 特征图的大小是经过池化层后改变的
第一次pooling后28*28变为14*14
第二次pooling后14*14变为7*7,即最终是一个7*7*64的特征图

"""
# 偏置项
biases = {
    'bc1': tf.Variable(tf.random_normal([32], stddev=0.1)),      # conv1,对应32个特征图
    'bc2': tf.Variable(tf.random_normal([64], stddev=0.1)),      # conv2,对应64个特征图
    'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),    # fc1,对应1024个向量
    'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1)) # fc2,对应10个输出
}

def conv_basic(_input, _w, _b, _keep_prob):
    # INPUT
    # 对图像做预处理,转换为tf支持的格式,即[n, h, w, c],-1是确定好其它3维后,让tf去推断剩下的1维
    _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) 

    # CONV LAYER 1
    _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
    # [1, 1, 1, 1]分别代表batch_size、h、w、c的stride
    # padding有两种选择:'SAME'(窗口滑动时,像素不够会自动补0)或'VALID'(不够就跳过)两种选择
    _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1'])) # 卷积层后连激活函数
    # 最大值池化,[1, 2, 2, 1]其中1,1对应batch_size和channel,2,2对应2*2的池化
    _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    # 随机杀死一些神经元,_keepratio为保留神经元比例,如0.6
    _pool_dr1 = tf.nn.dropout(_pool1, _keep_prob) 

    # CONV LAYER 2
    _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
    _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
    _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    _pool_dr2 = tf.nn.dropout(_pool2, _keep_prob) # dropout

    # VECTORIZE向量化
    # 定义全连接层的输入,把pool2的输出做一个reshape,变为向量的形式
    _densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]]) 

    # FULLY CONNECTED LAYER 1
    _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1']), _b['bd1'])) # w*x+b,再通过relu
    _fc_dr1 = tf.nn.dropout(_fc1, _keep_prob) # dropout

    # FULLY CONNECTED LAYER 2
    _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2']) # w*x+b,得到结果

    # RETURN
    out = {'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool_dr1': _pool_dr1,
           'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'densel': _densel,
           'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
           }
    return out
print("CNN READY")
x = tf.placeholder(tf.float32, [None, n_input]) # 用placeholder先占地方,样本个数不确定为None
y = tf.placeholder(tf.float32, [None, n_output]) # 用placeholder先占地方,样本个数不确定为None
keep_prob = tf.placeholder(tf.float32)
_pred = conv_basic(x, weights, biases, keep_prob)['out'] # 前向传播的预测值
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) # 交叉熵损失函数
optm = tf.train.AdamOptimizer(0.001).minimize(cost) # 梯度下降优化器
_corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) # 对比预测值索引和实际label索引,相同返回True,不同返回False
accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) # 将True或False转换为1或0,并对所有的判断结果求均值
init = tf.global_variables_initializer()
print("FUNCTIONS READY")

# 上面神经网络结构定义好之后,下面定义一些超参数
training_epochs = 1000 # 所有样本迭代1000次
batch_size = 100 # 每进行一次迭代选择100个样本
display_step = 1
# LAUNCH THE GRAPH
sess = tf.Session() # 定义一个Session
sess.run(init) # 在sess里run一下初始化操作
# OPTIMIZE
for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = int(mnist.train.num_examples/batch_size)
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐个batch的去取数据
        sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keep_prob:0.5})
        avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob:1.0})/total_batch
    if epoch % display_step == 0:
        train_accuracy = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})
        test_accuracy = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob:1.0})
        print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f"
              % (epoch, training_epochs, avg_cost, train_accuracy, test_accuracy))
print("DONE")

我用的显卡是GTX960,在跑这个卷积神经网络的时候,第一次filter分别设的是64和128,结果报蜜汁错误了,反正就是我显存不足,所以改成了32和64,让特征图少一点。所以,是让我换1080的意思喽

I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:885] Found device 0 with properties:
name: GeForce GTX 960
major: 5 minor: 2 memoryClockRate (GHz) 1.304
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.33GiB
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:906] DMA: 0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:916] 0:   Y
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 960, pci bus id: 0000:01:00.0)
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.59GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 1.34GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.10GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 3.90GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
Epoch: 000/1000 cost: 0.517761162 TRAIN ACCURACY: 0.970 TEST ACCURACY: 0.967
Epoch: 001/1000 cost: 0.093012387 TRAIN ACCURACY: 0.960 TEST ACCURACY: 0.979
.
.
.
省略

以上就是TensorFlow另一种程序风格实现卷积神经网络的详细内容,更多关于TensorFlow卷积神经网络的资料请关注我们其它相关文章!

(0)

相关推荐

  • TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集

    基于MNIST数据集的逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程.多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线.竖线.圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分类. import tensorflow as tf import numpy as np import input_data print('Download and Extract MNIST datas

  • TensorFlow神经网络创建多层感知机MNIST数据集

    前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率. 前文传送门: TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集 现在建含一个隐层的神经网络模型(多层感知机). import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True)

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • TensorFlow神经网络构造线性回归模型示例教程

    先制作一些数据: import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围 num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) # np.random.normal(mean,stdev,size)给出均

  • python神经网络TensorFlow简介常用基本操作教程

    目录 要将深度学习更快且更便捷地应用于新的问题中,选择一款深度学习工具是必不可少的步骤. TensorFlow是谷歌于2015年11月9日正式开源的计算框架.TensorFlow计算框架可以很好地支持深度学习的各种算法. TensorFlow很好地兼容了学术研究和工业生产的不同需求. 一方面,TensorFlow的灵活性使得研究人员能够利用它快速实现新的模型设计: 另一方面,TensorFlow强大的分布式支持,对工业界在海量数据集上进行的模型训练也至关重要.作为谷歌开源的深度学习框架,Tens

  • TensorFlow卷积神经网络MNIST数据集实现示例

    这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集.网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络. import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready&q

  • TensorFlow深度学习另一种程序风格实现卷积神经网络

    import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready") n_input = 784 # 28*28的灰度图,像素个数784 n_output = 10 # 是10分类问题 # 权重项 weights = { # conv1,参数[3, 3, 1, 32]分别指定了fi

  • Tensorflow深度学习使用CNN分类英文文本

    目录 前言 源码与数据 源码 数据 train.py 源码及分析 data_helpers.py 源码及分析 text_cnn.py 源码及分析 前言 Github源码地址 本文同时也是学习唐宇迪老师深度学习课程的一些理解与记录. 文中代码是实现在TensorFlow下使用卷积神经网络(CNN)做英文文本的分类任务(本次是垃圾邮件的二分类任务),当然垃圾邮件分类是一种应用环境,模型方法也可以推广到其它应用场景,如电商商品好评差评分类.正负面新闻等. 源码与数据 源码 - data_helpers

  • python使用tensorflow深度学习识别验证码

    本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi

  • 详解基于深度学习的两种信源信道联合编码

    概述 经典端对端无线通信系统如下图所示: 信源 xx使用信源编码,去除冗余得到比特流 ss. 对 ss进行信道编码(如 Turbo.LDPC 等)得到 yy,增加相应的校验位来抵抗信道噪声. 对比特流 yy进行调制(如 BPSK.16QAM 等)得到 zz,并经物理信道发送. 接收端对经信道后的符号 \bar{z}zˉ 进行解调.解码操作得到 \bar{x}xˉ. 根据定义信道方式不同,基于深度学习的信源信道联合编码(Deep JSCC)可以分为两类. 第一类,受无编码传输的启发,将信源编码.信

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • tensorflow学习笔记之mnist的卷积神经网络实例

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru

  • Python深度学习pytorch神经网络块的网络之VGG

    目录 VGG块 VGG网络 训练模型 与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象.研究人员开始从单个神经元的角度思考问题,发展到整个层次,现在又转向模块,重复各层的模式. 使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry Group)(VGG)的VGG网络中.通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的结构. VGG块 经典卷积神经网络的基本组成部分是下面的这个序列: 1.带填充以保

  • 深度学习tensorflow基础mnist

    软件架构 mnist数据集的识别使用了两个非常小的网络来实现,第一个是最简单的全连接网络,第二个是卷积网络,mnist数据集是入门数据集,所以不需要进行图像增强,或者用生成器读入内存,直接使用简单的fit()命令就可以一次性训练 安装教程 使用到的主要第三方库有tensorflow1.x,基于TensorFlow的Keras,基础的库包括numpy,matplotlib 安装方式也很简答,例如:pip install numpy -i https://pypi.tuna.tsinghua.edu

  • python深度学习TensorFlow神经网络模型的保存和读取

    目录 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用.为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西. TensorFlow提供了一个非常简单的API,即tf.train.Saver类来保存和还原一个神经网络模型. 下面代码给出了保存TensorFlow模型的方法: import tensorflow as tf # 声明两个变量

随机推荐