Python编程中非常重要却又被严重低估的库decorator

目录
  • 常规的装饰器
  • 使用神库
  • 带参数的装饰器
  • 签名问题有解决?
  • 总结一下

本文已经收录于《Python黑魔法手册》v2.1 版本,在线文档请前往

Python黑魔法手册 2.0 文档

这个库可以帮你做什么呢 ?

其实很简单,就是可以帮你更方便地写python装饰器代码,更重要的是,它让 Python 中被装饰器装饰后的方法长得更像装饰前的方法。

不了解装饰器的可以先去阅读我们之前的文章,非常全且详细的介绍了装饰器的各种实现方法。

常规的装饰器

下面这是一个最简单的装饰器示例,在运行 myfunc 函数的前后都会打印一条日志。

def deco(func):
    def wrapper(*args, **kw):
        print("Ready to run task")
        func(*args, **kw)
        print("Successful to run task")
    return wrapper

@deco
def myfunc():
    print("Running the task")

myfunc()

装饰器使用起来,似乎有些高端和魔幻,对于一些重复性的功能,往往我们会封装成一个装饰器函数。

在定义一个装饰器的时候,我们都需要像上面一样机械性的写一个嵌套的函数,对装饰器原理理解不深的初学者,往往过段时间就会忘记如何定义装饰器。

有一些比较聪明的同学,会利用 PyCharm 来自动生成装饰器模板

然后要使用的时候,直接敲入 deco 就会生成一个简单的生成器代码,提高编码的准备效率

使用神库

使用 PyCharm 的 Live Template ,虽然能降低编写装饰器的难度,但却要依赖 PyCharm 这一专业的代码编辑器。

这里,明哥要教你一个更加简单的方法,使用这个方法呢,你需要先安装一个库 : decorator,使用 pip 可以很轻易地去安装它

$ python3 -m pip install decorator

从库的名称不难看出,这是一个专门用来解决装饰器问题的第三方库。

有了它之后,你会惊奇的发现,以后自己定义的装饰器,就再也不需要写嵌套的函数了

from decorator import decorator

@decorator
def deco(func, *args, **kw):
    print("Ready to run task")
    func(*args, **kw)
    print("Successful to run task")

@deco
def myfunc():
    print("Running the task")

myfunc()

deco 作为装饰函数,第一个参数是固定的,都是指被装饰函数,而后面的参数都固定使用 可变参数 *args**kw 的写法,代码被装饰函数的原参数。

这种写法,不得不说,更加符合直觉,代码的逻辑也更容易理解。

带参数的装饰器

装饰器根据有没有携带参数,可以分为两种

第一种:不带参数,最简单的示例,上面已经举例

def decorator(func):
    def wrapper(*args, **kw):
        func(*args, **kw)
    return wrapper

第二种:带参数,这就相对复杂了,理解起来了也不是那么容易。

def decorator(arg1, arg2):
    def wrapper(func):
        def deco(*args, **kwargs)
            func(*args, **kwargs)
        return deco
    return wrapper

那么对于需要带参数的装饰器,decorator 是否也一样能很好的支持呢?

下面是一个官方的示例

from decorator import decorator

@decorator
def warn_slow(func, timelimit=60, *args, **kw):
    t0 = time.time()
    result = func(*args, **kw)
    dt = time.time() - t0
    if dt > timelimit:
        logging.warn('%s took %d seconds', func.__name__, dt)
    else:
        logging.info('%s took %d seconds', func.__name__, dt)
    return result

@warn_slow(timelimit=600)  # warn if it takes more than 10 minutes
def run_calculation(tempdir, outdir):
    pass

可以看到

  • 装饰函数的第一个参数,还是被装饰器 func ,这个跟之前一样
  • 而第二个参数 timelimit 写成了位置参数的写法,并且有默认值
  • 再往后,就还是跟原来一样使用了可变参数的写法

不难推断,只要你在装饰函数中第二个参数开始,使用了非可变参数的写法,这些参数就可以做为装饰器调用时的参数。

签名问题有解决?

我们在自己写装饰器的时候,通常都会顺手加上一个叫 functools.wraps 的装饰器,我想你应该也经常见过,那他有啥用呢?

先来看一个例子

def wrapper(func):
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
#inner_function

为什么会这样子?不是应该返回 func 吗?

这也不难理解,因为上边执行func 和下边 decorator(func) 是等价的,所以上面 func.__name__ 是等价于下面decorator(func).__name__ 的,那当然名字是 inner_function

def wrapper(func):
    def inner_function():
        pass
    return inner_function

def wrapped():
    pass

print(wrapper(wrapped).__name__)
#inner_function

目前,我们可以看到当一个函数被装饰器装饰过后,它的签名信息会发生变化(譬如上面看到的函数名)

那如何避免这种情况的产生?

解决方案就是使用我们前面所说的 functools .wraps 装饰器。

它的作用就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

from functools import wraps

def wrapper(func):
    @wraps(func)
    def inner_function():
        pass
    return inner_function

@wrapper
def wrapped():
    pass

print(wrapped.__name__)
# wrapped

那么问题就来了,我们使用了 decorator 之后,是否还会存在这种签名的问题呢?

写个例子来验证一下就知道啦

from decorator import decorator

@decorator
def deco(func, *args, **kw):
    print("Ready to run task")
    func(*args, **kw)
    print("Successful to run task")

@deco
def myfunc():
    print("Running the task")

print(myfunc.__name__)

输出的结果是 myfunc,说明 decorator 已经默认帮我们处理了一切可预见的问题。

总结一下

decorator 是一个提高装饰器编码效率的第三方库,它适用于对装饰器原理感到困惑的新手,可以让你很轻易的写出更符合人类直觉的代码。对于带参数装饰器的定义,是非常复杂的,它需要要写多层的嵌套函数,并且需要你熟悉各个参数的传递路径,才能保证你写出来的装饰器可以正常使用。这时候,只要用上 decorator 这个库,你就可以很轻松的写出一个带参数的装饰器。同时你也不用担心他会出现签名问题,这些它都为你妥善的处理好了。

这么棒的一个库,推荐你使用起来。

以上就是Python编程中非常重要却又被严重低估的库decorator的详细内容,更多关于Python编程库decorator的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python装饰器(decorator)定义与用法详解

    本文实例讲述了Python装饰器(decorator)定义与用法.分享给大家供大家参考,具体如下: 什么是装饰器(decorator) 简单来说,可以把装饰器理解为一个包装函数的函数,它一般将传入的函数或者是类做一定的处理,返回修改之后的对象.所以,我们能够在不修改原函数的基础上,在执行原函数前后执行别的代码.比较常用的场景有日志插入,事务处理等. 装饰器 最简单的函数,返回两个数的和 def calc_add(a, b): return a + b calc_add(1, 2) 但是现在又有新

  • python中的decorator的作用详解

    1.概念 装饰器(decorator)就是:定义了一个函数,想在运行时动态增加功能,又不想改动函数本身的代码.可以起到复用代码的功能,避免每个函数重复性编写代码,简言之就是拓展原来函数功能的一种函数.在python中,装饰器(decorator)分为 函数装饰器 和 类装饰器 两种.python中内置的@语言就是为了简化装饰器调用. 列出几个装饰器函数: 打印日志:@log 检测性能:@performance 数据库事务:@transaction URL路由:@post('/register')

  • Python中用Decorator来简化元编程的教程

    少劳多得 Decorator 与 Python 之前引入的元编程抽象有着某些共同之处:即使没有这些技术,您也一样可以实现它们所提供的功能.正如 Michele Simionato 和我在 可爱的 Python 专栏的早期文章 中指出的那样,即使在 Python 1.5 中,也可以实现 Python 类的创建,而不需要使用 "元类" 挂钩. Decorator 根本上的平庸与之非常类似.Decorator 所实现的功能就是修改紧接 Decorator 之后定义的函数和方法.这总是可能的,

  • Python中decorator使用实例

    在我以前介绍 Python 2.4 特性的Blog中已经介绍过了decorator了,不过,那时是照猫画虎,现在再仔细描述一下它的使用. 关于decorator的详细介绍在 Python 2.4中的What's new中已经有介绍,大家可以看一下. 如何调用decorator 基本上调用decorator有两种形式 第一种: 复制代码 代码如下: @A def f (): 这种形式是decorator不带参数的写法.最终 Python 会处理为: 复制代码 代码如下: f = A(f) 还可以扩

  • Python编程中非常重要却又被严重低估的库decorator

    目录 常规的装饰器 使用神库 带参数的装饰器 签名问题有解决? 总结一下 本文已经收录于<Python黑魔法手册>v2.1 版本,在线文档请前往 Python黑魔法手册 2.0 文档 这个库可以帮你做什么呢 ? 其实很简单,就是可以帮你更方便地写python装饰器代码,更重要的是,它让 Python 中被装饰器装饰后的方法长得更像装饰前的方法. 不了解装饰器的可以先去阅读我们之前的文章,非常全且详细的介绍了装饰器的各种实现方法. 常规的装饰器 下面这是一个最简单的装饰器示例,在运行 myfun

  • Python编程中的反模式实例分析

    本文实例讲述了Python编程中的反模式.分享给大家供大家参考.具体分析如下: Python是时下最热门的编程语言之一了.简洁而富有表达力的语法,两三行代码往往就能解决十来行C代码才能解决的问题:丰富的标准库和第三方库,大大节约了开发时间,使它成为那些对性能没有严苛要求的开发任务的首选:强大而活跃的社区,齐全的文档,也使很多编程的初学者选择了它作为自己的第一门编程语言.甚至有国外的报道称,Python已经成为了美国顶尖大学里最受欢迎的编程入门教学语言. 要学好一门编程语言实属不易,在初学阶段,就

  • Python编程中NotImplementedError的使用方法

    Python编程中raise可以实现报出错误的功能,而报错的条件可以由程序员自己去定制.在面向对象编程中,可以先预留一个方法接口不实现,在其子类中实现. 如果要求其子类一定要实现,不实现的时候会导致问题,那么采用raise的方式就很好. 而此时产生的问题分类是NotImplementedError. 写一段代码如下: class ClassDemo: def test_demo(self): raiseNotImplementedError("my test: not implemented!&

  • Python编程中*args与**kwargs区别作用详解

    相信学Python的小伙伴肯定有这样的尴尬局面,给一个函数不会用, 原因是:不知道参数列表中的类型是什么意思,比如初学者都会疑问的:*args和**kwargs到底是怎么用. 当你知道这个时,我猜你肯定能会用好多函数了! #*args的用法:当传入的参数个数未知,且不需要知道参数名称时. def func_arg(farg, *args): print("formal arg:", farg) for arg in args: print("another arg:"

  • Python编程中闭包的变量作用域问题解析

    目录 闭包 闭包中的变量 闭包 ​ 在我们使用返回函数的时候,由于我们在一个函数中需要返回另一个函数,因此,我们在这个函数中就需要重新定义一个函数.而这样,就造成了我们的函数嵌套问题.外面的函数相对于里面的函数而言是外函数(outer function),而里面的我们叫他内函数(inner function). def outerFunction(): #外函数 def innerFunction(): #内函数 x = 1 return x return innerFunction #返回值是

  • python编程中简洁优雅的推导式示例详解

    目录 1. 列表推导式 增加条件语句 多重循环 更多用法 2. 字典推导式 3. 集合推导式 4. 元组推导式 Python语言有一种独特的推导式语法,相当于语法糖的存在,可以帮助你在某些场合写出较为精简酷炫的代码.但没有它,也不会有太多影响.Python语言有几种不同类型的推导式. 1. 列表推导式 列表推导式是一种快速生成列表的方式.其形式是用方括号括起来的一段语句,如下例子所示: lis = [x * x for x in range(1, 10)] print(lis) 输出 [1, 4

  • Python编程中内置的NotImplemented类型的用法

    目录 一.NotImplemented它是什么? 二.它有什么用?什么时候用? 一.NotImplemented它是什么? >>> type(NotImplemented) <type 'NotImplementedType'> NotImplemented 是Python在内置命名空间中的六个常数之一.其他有False.True.None.Ellipsis 和 debug.和 Ellipsis很像,[NotImplemented] 能被重新赋值(覆盖).对它赋值,甚至改变属

  • 详解Python编程中基本的数学计算使用

    数 在 Python 中,对数的规定比较简单,基本在小学数学水平即可理解. 那么,做为零基础学习这,也就从计算小学数学题目开始吧.因为从这里开始,数学的基础知识列位肯定过关了. >>> 3 3 >>> 3333333333333333333333333333333333333333 3333333333333333333333333333333333333333L >>> 3.222222 3.222222 上面显示的是在交互模式下,如果输入 3,就显

  • 对于Python编程中一些重用与缩减的建议

    返璞归真 许多流行的玩具都以这样一个概念为基础:简单的积木.这些简单的积木可通过多种方式组合在一起构造出全新的作品 -- 有时甚至完全令人出乎意料.这一概念同样适用于现实生活中的建筑领域,将基本原材料组合在一起,形成有用的建筑物.平凡无奇的材料.技术和工具简化了新建筑物的建造过程,同样也简化了对新踏入此领域的人员的培训. 相同的基本概念也适用于计算机程序开发技术,包括以 Python 编程语言编写的程序.本文介绍了使用 Python 创建基本构件 (building block) 的方法,可用于

  • 解析Python编程中的包结构

    假设你想设计一个模块集(也就是一个"包")来统一处理声音文件和声音数据.通常由它们的扩展有不同的声音格式,例如:WAV,AIFF,AU),所以你可能需要创建和维护一个不断增长的各种文件格式之间的转换的模块集合.并且可能要执行声音数据处理(如混合,添加回声,应用平衡功能),所以你写一个永无止境的流模块来执行这些操作:模块设计的包如下: sound/ Top-level package __init__.py Initialize the sound package formats/ Su

随机推荐