使用R语言绘制散点图结合边际分布图教程

目录
  • 1. 使用ggExtra结合ggplot2
    • 1)传统散点图
    • 2)密度函数
    • 3)直方图
    • 4)箱线图(宽窄的显示会有些问题)
    • 5)小提琴图(会有重叠,不建议使用)
    • 6)密度函数与直方图同时展现
  • 2. 使用cowplot与ggpubr
    • 1)重绘另一种散点图
    • 2)有缝拼接
    • 3)无缝拼接
  • 参考

主要使用ggExtra结合ggplot2两个R包进行绘制。(胜在简洁方便)使用cowplotggpubr进行绘制。(胜在灵活且美观)

下面的绘图我们均以iris数据集为例。

1. 使用ggExtra结合ggplot2

1)传统散点图

# library
library(ggplot2)
library(ggExtra)

# classic plot
p <- ggplot(iris) +
  geom_point(aes(x = Sepal.Length, y = Sepal.Width, color = Species), alpha = 0.6, shape = 16) +  # alpha 调整点的透明度;shape 调整点的形状
  theme_bw() +
  theme(legend.position = "bottom") + # 图例置于底部
  labs(x = "Sepal Length", y = "Sepal Width") # 添加x,y轴的名称
p

下面我们一行代码添加边际分布(分别以密度曲线与直方图的形式来展现):

2)密度函数

# marginal plot: density
ggMarginal(p, type = "density", groupColour = TRUE, groupFill = TRUE)

3)直方图

# marginal plot: histogram
ggMarginal(p, type = "histogram", groupColour = TRUE, groupFill = TRUE)

4)箱线图(宽窄的显示会有些问题)

# marginal plot: boxplot
ggMarginal(p, type = "boxplot", groupColour = TRUE, groupFill = TRUE)

5)小提琴图(会有重叠,不建议使用)

# marginal plot: violin
ggMarginal(p, type = "violin", groupColour = TRUE, groupFill = TRUE)

6)密度函数与直方图同时展现

# marginal plot: densigram
ggMarginal(p, type = "densigram", groupColour = TRUE, groupFill = TRUE)

2. 使用cowplot与ggpubr

1)重绘另一种散点图

# Scatter plot colored by groups ("Species")
sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",
                color = "Species", palette = "jco",
                size = 3, alpha = 0.6) +
  border() +
  theme(legend.position = "bottom")
sp

2)有缝拼接

① 密度函数

library(cowplot)
# Marginal density plot of x (top panel) and y (right panel)
xplot <- ggdensity(iris, "Sepal.Length", fill = "Species",
                   palette = "jco")
yplot <- ggdensity(iris, "Sepal.Width", fill = "Species",
                   palette = "jco") +
  rotate()

# Cleaning the plots
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
# Arranging the plot using cowplot
plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv",
          rel_widths = c(2, 1), rel_heights = c(1, 2))

② 未被压缩的箱线图

# Marginal boxplot of x (top panel) and y (right panel)
xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length",
                   color = "Species", fill = "Species", palette = "jco",
                   alpha = 0.5, ggtheme = theme_bw())+
  rotate()
yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width",
                   color = "Species", fill = "Species", palette = "jco",
                   alpha = 0.5, ggtheme = theme_bw())
# Cleaning the plots
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
# Arranging the plot using cowplot
plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv",
          rel_widths = c(2, 1), rel_heights = c(1, 2))

3)无缝拼接

# Main plot
pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
  geom_point() +
  color_palette("jco")
# Marginal densities along x axis
xdens <- axis_canvas(pmain, axis = "x") +
  geom_density(data = iris, aes(x = Sepal.Length, fill = Species),
               alpha = 0.7, size = 0.2) +
  fill_palette("jco")
# Marginal densities along y axis
# Need to set coord_flip = TRUE, if you plan to use coord_flip()
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +
  geom_density(data = iris, aes(x = Sepal.Width, fill = Species),
               alpha = 0.7, size = 0.2) +
  coord_flip() +
  fill_palette("jco")
p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")
ggdraw(p2)

参考

Articles - ggpubr: Publication Ready Plots——Perfect Scatter Plots with Correlation and Marginal Histograms

Marginal distribution with ggplot2 and ggExtra

以上就是使用R语言绘制散点图结合边际分布图教程的详细内容,更多关于R语言绘制散点图结合边际分布图的资料请关注我们其它相关文章!

(0)

相关推荐

  • R语言 使用ggplot2绘制好看的分组散点图

    我们以iris数据集为例,该数据集包括花萼的长度和宽度,花瓣的长度和宽度,以及物种,如下图: 本文我们要绘制不同物种下花萼的长度和宽度的分布情况,以及二者之间的相关性关系. 1. 首先载入ggplot2包, library(ggplot2) 2. 然后进行ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())绘制,在绘制中第一个参数是数据,第二个参数是数据映射,是绘制的全局变量,其中包含的参数有x,y,col

  • 如何用R语言绘制散点图

    散点图是将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定,每个点对应一个 X 和 Y 轴点坐标. 散点图可以使用 plot() 函数来绘制,语法格式如下: plot(x, y, type="p", main, xlab, ylab, xlim, ylim, axes) x 横坐标 x 轴的数据集合 y 纵坐标 y 轴的数据集合 type:绘图的类型,p 为点.l 为直线, o 同时绘制点和线,且线穿过点. main 图表标题. xlab.

  • R语言绘制散点图实例分析

    散点图显示在笛卡尔平面中绘制的许多点. 每个点表示两个变量的值. 在水平轴上选择一个变量,在垂直轴上选择另一个变量. 使用plot()函数创建简单散点图. 语法 在R语言中创建散点图的基本语法是 - plot(x, y, main, xlab, ylab, xlim, ylim, axes) 以下是所使用的参数的描述 - x是其值为水平坐标的数据集. y是其值是垂直坐标的数据集. main要是图形的图块. xlab是水平轴上的标签. ylab是垂直轴上的标签. xlim是用于绘图的x的值的极限.

  • R语言绘图-点图dot plot

    点图简介 点图又叫Cleveland dot plot,克利夫兰点图.可以在水平线上绘制大量的点,更好的表示点之间的关系.强调数据的排序展示以及数据之间的差距. 点图一般是横向展示,所以y轴为类别型变量,x轴为需要展示的数据值. dotchart函数 dotchart(x, labels = NULL, groups = NULL, gdata = NULL, ann = par("ann"), xaxt = par("xaxt"), frame.plot = TR

  • 使用R语言绘制散点图结合边际分布图教程

    目录 1. 使用ggExtra结合ggplot2 1)传统散点图 2)密度函数 3)直方图 4)箱线图(宽窄的显示会有些问题) 5)小提琴图(会有重叠,不建议使用) 6)密度函数与直方图同时展现 2. 使用cowplot与ggpubr 1)重绘另一种散点图 2)有缝拼接 3)无缝拼接 参考 主要使用ggExtra结合ggplot2两个R包进行绘制.(胜在简洁方便)使用cowplot与ggpubr进行绘制.(胜在灵活且美观) 下面的绘图我们均以iris数据集为例. 1. 使用ggExtra结合gg

  • 使用R语言绘制3D数据可视化scatter散点图实现步骤

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3.绘图所需package的调用 Step4.绘图 调整3D点的大小 调整透明度 注意事项 它来了它来了,它顺着网线走来了…哈哈,今天小仙给大家带来的是3D散点图. 强调一下啊,咱们这个教程里第一次出现了3D图,第一次出现了交互式图形(简单粗暴的理解, 用鼠标点击会动的图) 今天主要给大家介绍一下plotly这个R包,顺便分享下3D散点图的画法.plotly是一个在线的数据分析和可视化工具,图表类型丰富.可交互等等一堆优点

  • 使用R语言绘制棒棒糖图火柴杆图教程

    目录 使用原生ggplot方法 1)生成数据 使用ggpubr包中的ggdotchart() 参考 使用原生ggplot方法 最容易也是最简单想到的方法是直接使用ggplot2包进行更新,这里需要使用ggplot本身的特性,通过图层叠加的方式,进行最终棒棒糖图的展现.(宽度极窄的柱状图配合散点图即可呈现) 1)生成数据 下面我们的展示均以此份数据为例: library(ggplot2) # Load data data("mtcars") dfm <- mtcars # Conv

  • R语言在散点图中添加lm线性回归公式的问题

    目录 1. 简单的线性回归 2. 使用ggplot2展示 1. 简单的线性回归 函数自带的例子(R 中键入?lm),lm(y ~ x)回归y=kx + b, lm( y ~ x -1 )省略b,不对截距进行估计: require(graphics) ## Annette Dobson (1990) "An Introduction to Generalized Linear Models". ## Page 9: Plant Weight Data. ctl <- c(4.17,

  • 如何用R语言绘制饼图和条形图

    R 语言提供来大量的库来实现绘图功能. 饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量.频率或百分比之间的相对关系. R 语言使用 pie() 函数来实现饼图,语法格式如下: pie(x, labels = names(x), edges = 200, radius = 0.8, clockwise = FALSE, init.angle = if(clockwise) 90 else 0, density = NULL, angle = 45, col = NULL, bor

  • 用R语言绘制函数曲线图

    函数曲线图是研究函数的重要工具. R 中 curve() 函数可以绘制函数的图像,代码格式如下: curve(expr, from = NULL, to = NULL, n = 101, add = FALSE, type = "l", xname = "x", xlab = xname, ylab = NULL, log = NULL, xlim = NULL, -) # S3 函数的方法 plot(x, y = 0, to = 1, from = y, xlim

  • R语言绘制空间热力图实例讲解

    先上图 R语言的REmap包拥有非常强大的空间热力图以及空间迁移图功能,里面内置了国内外诸多城市坐标数据,使用起来方便快捷. 开始首先安装相关包 install_packages("devtools") install_packages("REmap") library(devtools) library(REmap) 我们来试试其强大的城市坐标获取功能 city<- c("beijing","上海") get_geo_

  • R语言绘制地图实例讲解

    setwd("C:/Users/75377/Desktop/SHEEP_ROH") png("12.png",width = 7000,height = 5500,pointsize = 170) par(mai = c(12,12,12,12),mgp = c(2.1,0.5,0)) #地图数据下载http://cos.name/wp-content/uploads/2009/07/chinaprovinceborderdata_tar_gz.zip librar

随机推荐