Python编程不要再使用print调试代码了

目录
  • 1. 快速安装
  • 2. 简单案例
  • 3. 详细使用
    • 3.1 重定向到日志文件
    • 3.2 跟踪非局部变量值
    • 3.3 设置跟踪函数的深度
    • 3.4 设置调试日志的前缀
    • 3.5 设置最大的输出长度
    • 3.6 支持多线程调试模式
    • 3.7 自定义对象的格式输出

给大家推荐本我自己写的电子书《PyCharm中文指南》,把各种 PyCharm 的高效的使用技巧用GIF动态图的形式展示出来。有兴趣的可以看它的在线文档:
http://pycharm.iswbm.com

对于每个程序开发者来说,调试几乎是必备技能。

代码写到一半卡住了,不知道这个函数执行完的返回结果是怎样的?调试一下看看

代码运行到一半报错了,什么情况?怎么跟预期的不一样?调试一下看看

调试的方法多种多样,不同的调试方法适合不同的场景和人群。

  • 如果你是刚接触编程的小萌新,对很多工具的使用还不是很熟练,那么 print 和 log 大法好
  • 如果你在本地(Win或者Mac)电脑上开发,那么 IDE 的图形化界面调试无疑是最适合的;
  • 如果你在服务器上排查BUG,那么使用 PDB 进行无图形界面的调试应该是首选;
  • 如果你要在本地进行开发,但是项目的进行需要依赖复杂的服务器环境,那么可以了解下 PyCharm 的远程调试

除了以上,今天明哥再给你介绍一款非常好用的调试工具,它能在一些场景下,大幅度提高调试的效率, 那就是 PySnooper,它在 Github 上已经收到了 13k 的 star,获得大家的一致好评。

有了这个工具后,就算是小萌新也可以直接无门槛上手,从此与 print 说再见~

1. 快速安装

执行下面这些命令进行安装 PySnooper

$ python3 -m pip install pysnooper

# 或者
$ conda install -c conda-forge pysnooper

# 或者
$ yay -S python-pysnooper

2. 简单案例

下面这段代码,定义了一个 demo_func 的函数,在里面生成一个 profile 的字典变量,然后去更新它,最后返回。

代码本身没有什么实际意义,但是用来演示 PySnooper 已经足够。

import pysnooper

@pysnooper.snoop()
def demo_func():
    profile = {}
    profile["name"] = "写代码的明哥"
    profile["age"] = 27
    profile["gender"] = "male"

    return profile

def main():
    profile = demo_func()

main()

现在我使用终端命令行的方式来运行它

[root@iswbm ~]# python3 demo.py
Source path:... demo.py
17:52:49.624943 call         4 def demo_func():
17:52:49.625124 line         5     profile = {}
New var:....... profile = {}
17:52:49.625156 line         6     profile["name"] = "写代码的明哥"
Modified var:.. profile = {'name': '写代码的明哥'}
17:52:49.625207 line         7     profile["age"] = 27
Modified var:.. profile = {'name': '写代码的明哥', 'age': 27}
17:52:49.625254 line         8     profile["gender"] = "male"
Modified var:.. profile = {'name': '写代码的明哥', 'age': 27, 'gender': 'male'}
17:52:49.625306 line        10     return profile
17:52:49.625344 return      10     return profile
Return value:.. {'name': '写代码的明哥', 'age': 27, 'gender': 'male'}
Elapsed time: 00:00:00.000486

可以看到 PySnooper 把函数运行的过程全部记录了下来,包括:

代码的片段、行号等信息,以及每一行代码是何时调用的?

函数内局部变量的值如何变化的?何时新增了变量,何时修改了变量。

函数的返回值是什么?

运行函数消耗了多少时间?

而作为开发者,要得到这些如此详细的调试信息,你需要做的非常简单,只要给你想要调试的函数上带上一顶帽子(装饰器) – @pysnooper.snoop() 即可。

3. 详细使用

3.1 重定向到日志文件

@pysnooper.snoop() 不加任何参数时,会默认将调试的信息输出到标准输出。

对于单次调试就能解决的 BUG ,这样没有什么问题,但是有一些 BUG 只有在特定的场景下才会出现,需要你把程序放在后面跑个一段时间才能复现。

这种情况下,你可以将调试信息重定向输出到某一日志文件中,方便追溯排查。

@pysnooper.snoop(output='/var/log/debug.log')
def demo_func():
    ...

3.2 跟踪非局部变量值

PySnooper 是以函数为单位进行调试的,它默认只会跟踪函数体内的局部变量,若想跟踪全局变量,可以给 @pysnooper.snoop() 加上 watch 参数

out = {"foo": "bar"}

@pysnooper.snoop(watch=('out["foo"]'))
def demo_func():
    ...

如此一来,PySnooper 会在 out["foo"] 值有变化时,也将其打印出来

watch 参数,接收一个可迭代对象(可以是list 或者 tuple),里面的元素为字符串表达式,什么意思呢?看下面例子就知道了

@pysnooper.snoop(watch=('out["foo"]', 'foo.bar', 'self.foo["bar"]'))
def demo_func():
		...

watch 相对的,pysnooper.snoop() 还可以接收一个函数 watch_explode,表示除了这几个参数外的其他所有全局变量都监控。

@pysnooper.snoop(watch_explode=('foo', 'bar'))
def demo_func():
		...

3.3 设置跟踪函数的深度

当你使用 PySnooper 调试某个函数时,若该函数中还调用了其他函数,PySnooper 是不会傻傻的跟踪进去的。

如果你想继续跟踪该函数中调用的其他函数,可以通过指定 depth 参数来设置跟踪深度(不指定的话默认为 1)。

@pysnooper.snoop(depth=2)
def demo_func():
		...

3.4 设置调试日志的前缀

当你在使用 PySnooper 跟踪多个函数时,调试的日志会显得杂乱无章,不方便查看。

在这种情况下,PySnooper 提供了一个参数,方便你为不同的函数设置不同的标志,方便你在查看日志时进行区分。

@pysnooper.snoop(output="/var/log/debug.log", prefix="demo_func: ")
def demo_func():
    ...

效果如下

3.5 设置最大的输出长度

默认情况下,PySnooper 输出的变量和异常信息,如果超过 100 个字符,被会截断为 100 个字符。

当然你也可以通过指定参数 进行修改

@pysnooper.snoop(max_variable_length=200)
def demo_func():
    ...

您也可以使用max_variable_length=None它从不截断它们。

@pysnooper.snoop(max_variable_length=None)
def demo_func():
    ...

3.6 支持多线程调试模式

PySnooper 同样支持多线程的调试,通过设置参数 thread_info=True,它就会在日志中打印出是在哪个线程对变量进行的修改。

@pysnooper.snoop(thread_info=True)
def demo_func():
    ...

效果如下

3.7 自定义对象的格式输出

pysnooper.snoop() 函数有一个参数是 custom_repr,它接收一个元组对象。

在这个元组里,你可以指定特定类型的对象以特定格式进行输出。

这边我举个例子。

假如我要跟踪 person 这个 Person 类型的对象,由于它不是常规的 Python 基础类型,PySnooper 是无法正常输出它的信息的。

因此我在 pysnooper.snoop() 函数中设置了 custom_repr 参数,该参数的第一个元素为 Person,第二个元素为 print_persion_obj 函数。

PySnooper 在打印对象的调试信息时,会逐个判断它是否是 Person 类型的对象,若是,就将该对象传入 print_persion_obj 函数中,由该函数来决定如何显示这个对象的信息。

class Person:pass

def print_person_obj(obj):
    return f"<Person {obj.name} {obj.age} {obj.gender}>"

@pysnooper.snoop(custom_repr=(Person, print_person_obj))
def demo_func():
    ...

完整的代码如下

import pysnooper
class Person:pass
def print_person_obj(obj):
    return f"<Person {obj.name} {obj.age} {obj.gender}>"

@pysnooper.snoop(custom_repr=(Person, print_person_obj))
def demo_func():
    person = Person()
    person.name = "写代码的明哥"
    person.age = 27
    person.gender = "male"
    return person

def main():
    profile = demo_func()

main()

运行一下,观察一下效果。

如果你要自定义格式输出的有很多个类型,那么 custom_repr 参数的值可以这么写

@pysnooper.snoop(custom_repr=((Person, print_person_obj), (numpy.ndarray, print_ndarray)))
def demo_func():
    ...

还有一点我提醒一下,元组的第一个元素可以是类型(如类名Person 或者其他基础类型 list等),也可以是一个判断对象类型的函数。

也就是说,下面三种写法是等价的。

# 【第一种写法】
@pysnooper.snoop(custom_repr=(Person, print_persion_obj))
def demo_func():
    ...

# 【第二种写法】
def is_persion_obj(obj):
    return isinstance(obj, Person)

@pysnooper.snoop(custom_repr=(is_persion_obj, print_persion_obj))
def demo_func():
    ...

# 【第三种写法】
@pysnooper.snoop(custom_repr=(lambda obj: isinstance(obj, Person), print_persion_obj))
def demo_func():
    ...

以上就是明哥今天给大家介绍的一款调试神器(PySnooper) 的详细使用手册,是不是觉得还不错?

以上就是Python编程不要再使用print调试代码了的详细内容,更多关于Python代码调试的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python 代码调试技巧示例代码

    Debug 对于任何开发人员都是一项非常重要的技能,它能够帮助我们准确的定位错误,发现程序中的 bug.python 提供了一系列 debug 的工具和包,可供我们选择.本文将主要阐述如何利用 python debug 相关工具进行 debug. 使用 pdb 进行调试 pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括设置断点.单步调试.进入函数调试.查看当前代码.查看栈片段.动态改变变量的值等.pdb 提供了一些常用的调试命令,详情见表

  • 调试Python程序代码的几种方法总结

    程序能一次写完并正常运行的概率很小,基本不超过1%.总会有各种各样的bug需要修正.有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug. 第一种方法简单直接粗暴有效,就是用print把可能有问题的变量打印出来看看: # err.py def foo(s): n = int(s) print '>>> n = %d' % n return 10 / n def main(): f

  • Python代码调试的几种方法总结

    使用 pdb 进行调试 pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括设置断点.单步调试.进入函数调试.查看当前代码.查看栈片段.动态改变变量的值等.pdb 提供了一些常用的调试命令,详情见表 1. 表 1. pdb 常用命令 下面结合具体的实例讲述如何使用 pdb 进行调试. 清单 1. 测试代码示例 import pdb a = "aaa" pdb.set_trace() b = "bbb" c = &

  • GitHub 热门:别再用 print 输出来调试代码了

    4 月 23 日,GitHub 每日趋势榜第一位是一个 Python ,相关项目:PySnooper. 该项目很快获取 2200 Star. PySnooper 是个什么东西? 如果你写的 Python 代码不能按如期那样运行,你会绞尽脑汁想为啥出错了.虽然你希望有支持断点的成熟调试器,但或许你现在不想去设置这样的调试器. 你想知道哪些行代码是正常运行,哪些行不正常.据说大多数人会在可疑位置使用 print 输出语句. 其实 PySnooper 的作用有点类似,你不用小心谨慎地用 print 输

  • Python编程不要再使用print调试代码了

    目录 1. 快速安装 2. 简单案例 3. 详细使用 3.1 重定向到日志文件 3.2 跟踪非局部变量值 3.3 设置跟踪函数的深度 3.4 设置调试日志的前缀 3.5 设置最大的输出长度 3.6 支持多线程调试模式 3.7 自定义对象的格式输出 给大家推荐本我自己写的电子书<PyCharm中文指南>,把各种 PyCharm 的高效的使用技巧用GIF动态图的形式展示出来.有兴趣的可以看它的在线文档: http://pycharm.iswbm.com 对于每个程序开发者来说,调试几乎是必备技能.

  • 在Python编程过程中用单元测试法调试代码的介绍

    对于程序开发新手来说,一个最常见的困惑是测试的主题.他们隐约觉得"单元测试"是很好的,而且他们也应该做单元测试.但他们却不懂这个词的真正含义.如果这听起来像是在说你,不要怕!在这篇文章中,我将介绍什么是单元测试,为什么它有用,以及如何对Python的代码进行单元测试. 什么是测试? 在讨论为什么测试很有用.怎样进行测试之前,让我们先花几分钟来定义一下"单元测试"究竟是什么.在一般的编程术语中,"测试"指的是通过编写可以调用的代码(独立于你实际应用

  • Python编程scoketServer实现多线程同步实例代码

    本文研究的主要是Python编程scoketServer实现多线程同步的相关内容,具体介绍如下. 开发过程中,为了实现不同的客户端同一时刻只能有一个使用共同数据. 虽说用Python编写简单的网络程序很方便,但复杂一点的网络程序还是用现成的框架比较好.这样就可以专心事务逻辑,而不是套接字的各种细节.SocketServer模块简化了编写网络服务程序的任务.同时SocketServer模块也是Python标准库中很多服务器框架的基础. 网络服务类: SocketServer提供了4个基本的服务类:

  • Python编程二分法实现冒泡算法+快速排序代码示例

    本文分享的实例主要是Python编程二分法实现冒泡算法+快速排序,具体如下. 冒泡算法: #-*- coding: UTF-8 -*- #冒泡排序 def func(lt): if type(lt).__name__ !='list' and type(lt).__name__ !='tuple': return if type(lt).__name__ == 'tuple': return list(lt) for i in range(1,len(lt)-1): for j in range

  • Python编程密码学文件加密与解密代码解析

    目录 本章要点 1 纯文本文件 2 使用置换密码加密文件的源代码 transpositionFileCipher.py 3 运行置换密码加密文件程序的样例 4 文件操作 4.1 打开文件 4.2 数据写入及文件关闭 4.3 读取文件 5 创建main()函数 6 检查文件是否存在 6.1 os.path.exists() 方法 6.2 使用os.path.exists()方法检查输入的文件是否存在 7 使用字符串方法令用户的输入更灵活 7.1 upper().lower()和title()字符串

  • Python编程实现线性回归和批量梯度下降法代码实例

    通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: import numpy as np import matplotlib.pyplot as plt import random class dataMinning: datasets = [] labelsets = [] addressD = '' #Data folder addressL = '' #Label folder npDatasets = np.zer

  • Python编程求质数实例代码

    本文研究的主要是Python编程求质数实例,选取了几个数进行了测试,具体如下. 定义:质数又称素数.一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数:否则称为合数. 我们知道自然数(除了0和1以外)都可以写成几个质数相乘再乘以一的格式,所以我们可以用以个数去试一试看看它能否将小于它的质数整除. 首先我们创建一个空的list,然后我们知道2是最小的质数,于是我们把2添加进这个空白的list,之后我们开始循环,第一个数从3开始,用3除以小于3的质数,没有小于它的质数能被它整除,

  • python编程羊车门问题代码示例

    问题: 有3扇关闭的门,一扇门后面停着汽车,其余门后是山羊,只有主持人知道每扇门后面是什么.参赛者可以选择一扇门,在开启它之前,主持人会开启另外一扇门,露出门后的山羊,然后允许参赛者更换自己的选择. 请问: 1.按照你的第一感觉回答,你觉得不换选择能有更高的几率获得汽车,还是换选择能有更高的几率获得汽车?或几率没有发生变化? 答:第一感觉换与不换获奖几率没有发生变化. 2.请自己认真分析一下"不换选择能有更高的几率获得汽车,还是换选择能有更高的几率获得汽车?或几率没有发生变化?" 写出

  • python编程线性回归代码示例

    用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子.scipy.stats.linregress例子.pandas.ols例子等. 不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用. 一.二维直线的例子 预备知识:线性方程y=a∗x+b.y=a∗x+b表示平面一直线 下面的例子中,我们根据房屋面积.房屋价格的历史数据,建立线性回归模型. 然后,根据给出的房屋面积,来预测房屋价格

  • Python编程产生非均匀随机数的几种方法代码分享

    1.反变换法 设需产生分布函数为F(x)的连续随机数X.若已有[0,1]区间均匀分布随机数R,则产生X的反变换公式为: F(x)=r, 即x=F-1(r) 反函数存在条件:如果函数y=f(x)是定义域D上的单调函数,那么f(x)一定有反函数存在,且反函数一定是单调的.分布函数F(x)为是一个单调递增函数,所以其反函数存在.从直观意义上理解,因为r一一对应着x,而在[0,1]均匀分布随机数R≤r的概率P(R≤r)=r. 因此,连续随机数X≤x的概率P(X≤x)=P(R≤r)=r=F(x) 即X的分

随机推荐