Java将CSV的数据发送到kafka的示例

为什么将CSV的数据发到kafka

  • flink做流式计算时,选用kafka消息作为数据源是常用手段,因此在学习和开发flink过程中,也会将数据集文件中的记录发送到kafka,来模拟不间断数据;
  • 整个流程如下:

  • 您可能会觉得这样做多此一举:flink直接读取CSV不就行了吗?这样做的原因如下:
  • 首先,这是学习和开发时的做法,数据集是CSV文件,而生产环境的实时数据却是kafka数据源;
  • 其次,Java应用中可以加入一些特殊逻辑,例如数据处理,汇总统计(用来和flink结果对比验证);
  • 另外,如果两条记录实际的间隔时间如果是1分钟,那么Java应用在发送消息时也可以间隔一分钟再发送,这个逻辑在flink社区的demo中有具体的实现,此demo也是将数据集发送到kafka,再由flink消费kafka,地址是:https://github.com/ververica/sql-training

如何将CSV的数据发送到kafka

前面的图可以看出,读取CSV再发送消息到kafka的操作是Java应用所为,因此今天的主要工作就是开发这个Java应用,并验证;

版本信息

  • JDK:1.8.0_181
  • 开发工具:IntelliJ IDEA 2019.2.1 (Ultimate Edition)
  • 开发环境:Win10
  • Zookeeper:3.4.13
  • Kafka:2.4.0(scala:2.12)

关于数据集

  1. 本次实战用到的数据集是CSV文件,里面是一百零四万条淘宝用户行为数据,该数据来源是阿里云天池公开数据集,我对此数据做了少量调整;
  2. 此CSV文件可以在CSDN下载,地址:https://download.csdn.net/download/boling_cavalry/12381698
  3. 也可以在我的Github下载,地址:https://raw.githubusercontent.com/zq2599/blog_demos/master/files/UserBehavior.7z
  4. 该CSV文件的内容,一共有六列,每列的含义如下表:
列名称 说明
用户ID 整数类型,序列化后的用户ID
商品ID 整数类型,序列化后的商品ID
商品类目ID 整数类型,序列化后的商品所属类目ID
行为类型 字符串,枚举类型,包括('pv', 'buy', 'cart', 'fav')
时间戳 行为发生的时间戳
时间字符串 根据时间戳字段生成的时间字符串

Java应用简介

编码前,先把具体内容列出来,然后再挨个实现:

  1. 从CSV读取记录的工具类:UserBehaviorCsvFileReader
  2. 每条记录对应的Bean类:UserBehavior
  3. Java对象序列化成JSON的序列化类:JsonSerializer
  4. 向kafka发送消息的工具类:KafkaProducer
  5. 应用类,程序入口:SendMessageApplication

上述五个类即可完成Java应用的工作,接下来开始编码吧;

直接下载源码

如果您不想写代码,您可以直接从GitHub下载这个工程的源码,地址和链接信息如下表所示:

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章源码在flinksql这个文件夹下,如下图红框所示:

编码

创建maven工程,pom.xml如下,比较重要的jackson和javacsv的依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.bolingcavalry</groupId>
 <artifactId>flinksql</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
  <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  <flink.version>1.10.0</flink.version>
  <kafka.version>2.2.0</kafka.version>
  <java.version>1.8</java.version>
  <scala.binary.version>2.11</scala.binary.version>
  <maven.compiler.source>${java.version}</maven.compiler.source>
  <maven.compiler.target>${java.version}</maven.compiler.target>
 </properties>

 <dependencies>
  <dependency>
   <groupId>org.apache.kafka</groupId>
   <artifactId>kafka-clients</artifactId>
   <version>${kafka.version}</version>
  </dependency>

  <dependency>
   <groupId>com.fasterxml.jackson.core</groupId>
   <artifactId>jackson-databind</artifactId>
   <version>2.9.10.1</version>
  </dependency>

  <!-- Logging dependencies -->
  <dependency>
   <groupId>org.slf4j</groupId>
   <artifactId>slf4j-log4j12</artifactId>
   <version>1.7.7</version>
   <scope>runtime</scope>
  </dependency>
  <dependency>
   <groupId>log4j</groupId>
   <artifactId>log4j</artifactId>
   <version>1.2.17</version>
   <scope>runtime</scope>
  </dependency>
  <dependency>
   <groupId>net.sourceforge.javacsv</groupId>
   <artifactId>javacsv</artifactId>
   <version>2.0</version>
  </dependency>

 </dependencies>

 <build>
  <plugins>
   <!-- Java Compiler -->
   <plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-compiler-plugin</artifactId>
    <version>3.1</version>
    <configuration>
     <source>${java.version}</source>
     <target>${java.version}</target>
    </configuration>
   </plugin>

   <!-- Shade plugin to include all dependencies -->
   <plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-shade-plugin</artifactId>
    <version>3.0.0</version>
    <executions>
     <!-- Run shade goal on package phase -->
     <execution>
      <phase>package</phase>
      <goals>
       <goal>shade</goal>
      </goals>
      <configuration>
       <artifactSet>
        <excludes>
        </excludes>
       </artifactSet>
       <filters>
        <filter>
         <!-- Do not copy the signatures in the META-INF folder.
         Otherwise, this might cause SecurityExceptions when using the JAR. -->
         <artifact>*:*</artifact>
         <excludes>
          <exclude>META-INF/*.SF</exclude>
          <exclude>META-INF/*.DSA</exclude>
          <exclude>META-INF/*.RSA</exclude>
         </excludes>
        </filter>
       </filters>
      </configuration>
     </execution>
    </executions>
   </plugin>
  </plugins>
 </build>
</project>

从CSV读取记录的工具类:UserBehaviorCsvFileReader,后面在主程序中会用到java8的Steam API来处理集合,所以UserBehaviorCsvFileReader实现了Supplier接口:

public class UserBehaviorCsvFileReader implements Supplier<UserBehavior> {

 private final String filePath;
 private CsvReader csvReader;

 public UserBehaviorCsvFileReader(String filePath) throws IOException {

  this.filePath = filePath;
  try {
   csvReader = new CsvReader(filePath);
   csvReader.readHeaders();
  } catch (IOException e) {
   throw new IOException("Error reading TaxiRecords from file: " + filePath, e);
  }
 }

 @Override
 public UserBehavior get() {
  UserBehavior userBehavior = null;
  try{
   if(csvReader.readRecord()) {
    csvReader.getRawRecord();
    userBehavior = new UserBehavior(
      Long.valueOf(csvReader.get(0)),
      Long.valueOf(csvReader.get(1)),
      Long.valueOf(csvReader.get(2)),
      csvReader.get(3),
      new Date(Long.valueOf(csvReader.get(4))*1000L));
   }
  } catch (IOException e) {
   throw new NoSuchElementException("IOException from " + filePath);
  }

  if (null==userBehavior) {
   throw new NoSuchElementException("All records read from " + filePath);
  }

  return userBehavior;
 }
}

每条记录对应的Bean类:UserBehavior,和CSV记录格式保持一致即可,表示时间的ts字段,使用了JsonFormat注解,在序列化的时候以此来控制格式:

public class UserBehavior {

 @JsonFormat
 private long user_id;

 @JsonFormat
 private long item_id;

 @JsonFormat
 private long category_id;

 @JsonFormat
 private String behavior;

 @JsonFormat(shape = JsonFormat.Shape.STRING, pattern = "yyyy-MM-dd'T'HH:mm:ss'Z'")
 private Date ts;

 public UserBehavior() {
 }

 public UserBehavior(long user_id, long item_id, long category_id, String behavior, Date ts) {
  this.user_id = user_id;
  this.item_id = item_id;
  this.category_id = category_id;
  this.behavior = behavior;
  this.ts = ts;
 }
}

Java对象序列化成JSON的序列化类:JsonSerializer

public class JsonSerializer<T> {

 private final ObjectMapper jsonMapper = new ObjectMapper();

 public String toJSONString(T r) {
  try {
   return jsonMapper.writeValueAsString(r);
  } catch (JsonProcessingException e) {
   throw new IllegalArgumentException("Could not serialize record: " + r, e);
  }
 }

 public byte[] toJSONBytes(T r) {
  try {
   return jsonMapper.writeValueAsBytes(r);
  } catch (JsonProcessingException e) {
   throw new IllegalArgumentException("Could not serialize record: " + r, e);
  }
 }
}

向kafka发送消息的工具类:KafkaProducer:

public class KafkaProducer implements Consumer<UserBehavior> {

 private final String topic;
 private final org.apache.kafka.clients.producer.KafkaProducer<byte[], byte[]> producer;
 private final JsonSerializer<UserBehavior> serializer;

 public KafkaProducer(String kafkaTopic, String kafkaBrokers) {
  this.topic = kafkaTopic;
  this.producer = new org.apache.kafka.clients.producer.KafkaProducer<>(createKafkaProperties(kafkaBrokers));
  this.serializer = new JsonSerializer<>();
 }

 @Override
 public void accept(UserBehavior record) {
  // 将对象序列化成byte数组
  byte[] data = serializer.toJSONBytes(record);
  // 封装
  ProducerRecord<byte[], byte[]> kafkaRecord = new ProducerRecord<>(topic, data);
  // 发送
  producer.send(kafkaRecord);

  // 通过sleep控制消息的速度,请依据自身kafka配置以及flink服务器配置来调整
  try {
   Thread.sleep(500);
  }catch(InterruptedException e){
   e.printStackTrace();
  }
 }

 /**
  * kafka配置
  * @param brokers The brokers to connect to.
  * @return A Kafka producer configuration.
  */
 private static Properties createKafkaProperties(String brokers) {
  Properties kafkaProps = new Properties();
  kafkaProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers);
  kafkaProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
  kafkaProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
  return kafkaProps;
 }
}

最后是应用类SendMessageApplication,CSV文件路径、kafka的topic和borker地址都在此设置,另外借助java8的Stream API,只需少量代码即可完成所有工作:

public class SendMessageApplication {

 public static void main(String[] args) throws Exception {
  // 文件地址
  String filePath = "D:\\temp\\202005\\02\\UserBehavior.csv";
  // kafka topic
  String topic = "user_behavior";
  // kafka borker地址
  String broker = "192.168.50.43:9092";

  Stream.generate(new UserBehaviorCsvFileReader(filePath))
    .sequential()
    .forEachOrdered(new KafkaProducer(topic, broker));
 }
}

验证

  1. 请确保kafka已经就绪,并且名为user_behavior的topic已经创建;
  2. 请将CSV文件准备好;
  3. 确认SendMessageApplication.java中的文件地址、kafka topic、kafka broker三个参数准确无误;
  4. 运行SendMessageApplication.java;
  5. 开启一个 控制台消息kafka消息,参考命令如下:
./kafka-console-consumer.sh \
--bootstrap-server 127.0.0.1:9092 \
--topic user_behavior \
--consumer-property group.id=old-consumer-test \
--consumer-property consumer.id=old-consumer-cl \
--from-beginning
  • 正常情况下可以立即见到消息,如下图:

至此,通过Java应用模拟用户行为消息流的操作就完成了,接下来的flink实战就用这个作为数据源;

以上就是Java将CSV的数据发送到kafka得示例的详细内容,更多关于Java CSV的数据发送到kafka的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java中使用opencsv读写csv文件示例

    OpenCSV是一个简单的用于解析CSV文件的java类库,它封装了CSV格式文件的输出和读入,可以自动处理CSV格式中的特殊字符,最重要的是OpenCSV可以用于商业化(commercial-friendly).具体的使用方法: 读CSV文件 1.使用Iterator方式读 复制代码 代码如下: CSVReader reader = new CSVReader(new FileReader("yourfile.csv")); String [] nextLine; while ((n

  • java导出生成csv文件的方法

    首先我们需要对csv文件有基础的认识,csv文件类似excel,可以使用excel打开,但是csv文件的本质是逗号分隔的,对比如下图: txt中显示: 修改文件后缀为csv后显示如下: 在java中我们一般使用poi操作excel,导入,导出都可以,但是poi很消耗内存,尤其在导出时,这个时候我们其实可以选择导出生成csv文件,因为其跟文本差不多,所以效率很高. 简单写了一个实现类,代码如下: /** * * 导出生成csv格式的文件 * @author ccg * @param titles

  • java实现CSV文件导入与导出功能

    年前在开发功能模块的时候用到了CSV文件导入导出,就此整理一下,便于大家参考. 导入导出功能很多时候用到的都是Excel文件,但是现在越来越多的使用了CSV文件进行此操作,它是一个纯文本文件,可以用记事本打开,也可以用Excel打开.CSV文件不像Excel那样有很多条条框框,它使用硬回车分割每条记录,用逗号分隔每条数据的字段. CSV格式的文件就是用硬回车和文本都好实现的表格,用Excel一读就成了表格.文件名后缀就是 .csv. 直接上代码吧! 导入部分 导入的时候基于Ajax请求,js代码

  • Kafka Java Producer代码实例详解

    根据业务需要可以使用Kafka提供的Java Producer API进行产生数据,并将产生的数据发送到Kafka对应Topic的对应分区中,入口类为:Producer Kafka的Producer API主要提供下列三个方法: public void send(KeyedMessage<K,V> message) 发送单条数据到Kafka集群 public void send(List<KeyedMessage<K,V>> messages) 发送多条数据(数据集)到

  • Spring纯Java配置集成kafka代码实例

    这篇文章主要介绍了Spring纯Java配置集成kafka代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 KafkaConfig.java package com.niugang.config; import java.util.HashMap; import java.util.Map; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache

  • Java kafka如何实现自定义分区类和拦截器

    生产者发送到对应的分区有以下几种方式: (1)指定了patition,则直接使用:(可以查阅对应的java api, 有多种参数) (2)未指定patition但指定key,通过对key的value进行hash出一个patition: (3)patition和key都未指定,使用轮询选出一个patition. 但是kafka提供了,自定义分区算法的功能,由业务手动实现分布: 1.实现一个自定义分区类,CustomPartitioner实现Partitioner import org.apache

  • java实现批量导入.csv文件到mysql数据库

    这篇博文是在参加CCF时导入.csv文件时自己总结的,虽然NavicatForMysql可以导入.csv文件,可是当我导入的时候不知道是文件太大还是什么原因,总是会出现失败.然后就用java写了一个批量导入数据的类去导入该.csv文件,这里也没有考虑代码的结构,只是为了快速的完成这个工作,做一个总结. package com.cqu.price_prediction.farm; import java.io.File; import java.io.FileNotFoundException;

  • Java实现Kafka生产者消费者代码实例

    Kafka的结构与RabbitMQ类似,消息生产者向Kafka服务器发送消息,Kafka接收消息后,再投递给消费者. 生产者的消费会被发送到Topic中,Topic中保存着各类数据,每一条数据都使用键.值进行保存. 每一个Topic中都包含一个或多个物理分区(Partition),分区维护着消息的内容和索引,它们有可能被保存在不同服务器. 新建一个Maven项目,pom.xml 加入依赖: <dependency> <groupId>org.apache.kafka</gro

  • Javacsv实现Java读写csv文件

    今天跟大家分享一个利用外部Jar包来实现Java操作CSV文件 一.资源下载 1.直接下载Jar包:javacsv-2.0.jar 2.利用Maven下载Jar包: <dependency> <groupId>net.sourceforge.javacsv</groupId> <artifactId>javacsv</artifactId> <version>2.0</version> </dependency>

  • Java避免UTF-8的csv文件打开中文出现乱码的方法

    本文实例讲述了Java避免UTF-8的csv文件打开中文出现乱码的方法.分享给大家供大家参考,具体如下: 最近又遇到了需要提供csv下载功能的需求,不同的时需要用java来实现,心想简单,就把以前php的版本重写了一遍,然后生成一份csv,用excel2007打开一看,里面的中文都是乱码,一下就懵了,以前好好的功能怎么突然不行了??以前也一直用2007的啊!于是开始了漫长的google之旅. 看来看去,说的都是输出utf-8格式的csv需要在文件头先输出BOM(BOM不懂的可以google了),

  • kafka生产者和消费者的javaAPI的示例代码

    写了个kafka的java demo 顺便记录下,仅供参考 1.创建maven项目 目录如下: 2.pom文件: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://mave

随机推荐