检测tensorflow是否使用gpu进行计算的方式

如下所示:

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

查看日志信息若包含gpu信息,就是使用了gpu。

其他方法:跑计算量大的代码,通过 nvidia-smi 命令查看gpu的内存使用量。

以上这篇检测tensorflow是否使用gpu进行计算的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow -gpu安装方法(不用自己装cuda,cdnn)

    TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief [1]  . Tensorflow拥有多层级结构,可部署于各类服务器.PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 [1-2]  . tensorflow -gpu安装 首先,安装Anoconda 1. 官网下载点我:

  • 解决TensorFlow GPU版出现OOM错误的问题

    问题: 在使用mask_rcnn预测自己的数据集时,会出现下面错误: ResourceExhaustedError: OOM when allocating tensor with shape[1,512,1120,1120] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node rpn_model/rpn_conv_shared/convolution}} =

  • win10安装tensorflow-gpu1.8.0详细完整步骤

    在整个安装的过程中也遇到了很多的坑,故此做个记录,争取下次不再犯! 我的整个基本配置如下: 电脑环境如下:win10(64位)+CPU:E5-2603 +GPU:GTX 1070 需要安装的软件如下:Anaconda3-4.2.0-Windows-x86_64(python 3.5.2) + tensorflow-gpu 1.8 + CUDA 9.0 + cuDNN v7.1 for CUDA9.0 若你想在自己的windows上安装tensorflow-gpu,一般化也可以遵循如下的步骤. 1

  • tensorflow-gpu安装的常见问题及解决方案

    装tensorflow-gpu的时候经常遇到问题,自己装过几次,经常遇到相同或者类似的问题,所以打算记录一下,也希望对其他人有所帮助 基本信息 tensorflow-gpu pip安装(virtualenv等虚拟安装实质也是pip安装,只是建了个独立的环境,不会影响系统环境,查问题比较容易,最多重新再创建一个干净的环境再来) 安装完之后会用import tensorflow看是否安装成功,结果报错,主要有碰到下面两大类报错信息: 1.ImportError: DLL load failed: 找

  • win10系统Anaconda和Pycharm的Tensorflow2.0之CPU和GPU版本安装教程

    tf2.0的三个优点: 1.方便搭建网络架构: 2.自动求导 3.GPU加速(便于大数据计算) 安装过程(概要提示) step1:安装annaconda3 step2:安装pycharm step3:安装tensorflow2.0 cpu版本 (1)进入anaconda prompt(anaconda3) (2)默认为(base)环境 (3)输入python,查看python版本:输入exit()退出 (4)输入conda info --envs查看虚拟环境 (5)此处以在(base)环境中安装

  • 解决Tensorflow占用GPU显存问题

    我使用Pytorch进行模型训练时发现真正模型本身对于显存的占用并不明显,但是对应的转换为tensorflow后(权重也进行了转换),发现Python-tensorflow在使用时默认吃掉所有显存,并且不手动终结程序的话显存并不释放(我有两个序贯的模型,前面一个跑完后并不释放占用显存)(https://github.com/tensorflow/tensorflow/issues/1727),这一点对于后续的工作有很大的影响. 后面发现python-tensorflow限制显存有两种方法: 1.

  • Tensorflow实现多GPU并行方式

    Tebsorflow开源实现多GPU训练cifar10数据集:cifar10_multi_gpu_train.py Tensorflow开源实现cifar10神经网络:cifar10.py Tensorflow中的并行分为模型并行和数据并行.模型并行需要根据不同模型设计不同的并行方式,其主要原理是将模型中不同计算节点放在不同硬件资源上运算.比较通用且能简便地实现大规模并行的方式是数据并行,同时使用多个硬件资源来计算不同batch的数据梯度,然后汇总梯度进行全局更新. 数据并行几乎适用于所有深度学

  • 检测tensorflow是否使用gpu进行计算的方式

    如下所示: import tensorflow as tf sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 查看日志信息若包含gpu信息,就是使用了gpu. 其他方法:跑计算量大的代码,通过 nvidia-smi 命令查看gpu的内存使用量. 以上这篇检测tensorflow是否使用gpu进行计算的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • tensorflow使用指定gpu的方法

    TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief [1]  . Tensorflow拥有多层级结构,可部署于各类服务器.PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 . TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括Ten

  • tensorflow求导和梯度计算实例

    1. 函数求一阶导 import tensorflow as tf tf.enable_eager_execution() tfe=tf.contrib.eager from math import pi def f(x): return tf.square(tf.sin(x)) assert f(pi/2).numpy()==1.0 sess=tf.Session() grad_f=tfe.gradients_function(f) print(grad_f(np.zeros(1))[0].n

  • Keras设定GPU使用内存大小方式(Tensorflow backend)

    通过设置Keras的Tensorflow后端的全局变量达到. import os import tensorflow as tf import keras.backend.tensorflow_backend as KTF def get_session(gpu_fraction=0.3): '''Assume that you have 6GB of GPU memory and want to allocate ~2GB''' num_threads = os.environ.get('OM

  • Tensorflow全局设置可见GPU编号操作

    笔者需要tensorflow仅运行在一个GPU上(机器本身有多GPU),而且需要依据系统参数动态调节,故无法简单使用CUDA_VISIBLE_DEVICES. 一种方式是全局使用tf.device函数生成的域,但设备号需要在绘制Graph前指定,仍然不够灵活. 查阅文档发现config的GPUOptions中的visible_device_list可以定义GPU编号从visible到virtual的映射,即可以设置tensorflow可见的GPU device,从而全局设置了tensorflow

  • 详解tf.device()指定tensorflow运行的GPU或CPU设备实现

    在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上. 设置使用GPU 使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行: import tensorflow as tf with tf.device('/gpu:1'): v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1') v2 = tf.constant([1.0

  • C++ Qt利用GPU加速计算的示例详解

    在 C++ 和 Qt 中,可以通过以下方式利用 GPU 进行加速计算: 使用 GPU 编程框架:可以使用类似 CUDA.OpenCL.DirectCompute 等 GPU 编程框架,这些框架提供了对 GPU 的访问和操作,可以使用 GPU 进行并行计算,从而加速计算速度. 使用图形 API:在 Qt 中,可以使用 QOpenGLFunctions 等 API 访问 GPU,这些 API 可以用于执行图形渲染.图像处理等任务,利用 GPU 进行计算. 使用高性能计算库:在 C++ 中,有一些高性

  • 使用tensorflow实现VGG网络,训练mnist数据集方式

    VGG作为流行的几个模型之一,训练图形数据效果不错,在mnist数据集是常用的入门集数据,VGG层数非常多,如果严格按照规范来实现,并用来训练mnist数据集,会出现各种问题,如,经过16层卷积后,28*28*1的图片几乎无法进行. 先介绍下VGG ILSVRC 2014的第二名是Karen Simonyan和 Andrew Zisserman实现的卷积神经网络,现在称其为VGGNet.它主要的贡献是展示出网络的深度是算法优良性能的关键部分. 他们最好的网络包含了16个卷积/全连接层.网络的结构

  • 关于Tensorflow使用CPU报错的解决方式

    如下所示,简单明了,希望能帮助到你 解决: Operation was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/cpu:0 ]. tf.app.Flags.DEFINE_boolean('clone_on_cpu',False,'use CPUs to deploy clones.') 改为: tf.app.Flags.DEFINE_boole

随机推荐