Python标准库itertools的使用方法

Python标准库itertools模块介绍

itertools是python内置的模块,使用简单且功能强大,这里尝试汇总整理下,并提供简单应用示例;如果还不能满足你的要求,欢迎加入补充。

使用Python标准库itertools只需简单一句导入:import itertools

chain()

与其名称意义一样,给它一个列表如 lists/tuples/iterables,链接在一起;返回iterables对象。

letters = ['a', 'b', 'c', 'd', 'e', 'f']
booleans = [1, 0, 1, 0, 0, 1]
print(list(itertools.chain(letters,booleans)))
#输出:['a', 'b', 'c', 'd', 'e', 'f', 1, 0, 1, 0, 0, 1]
print(tuple(itertools.chain(letters,letters[3:])))
#输出('a', 'b', 'c', 'd', 'e', 'f', 'd', 'e', 'f')
print(set(itertools.chain(letters,letters[3:])))
#输出:{'a', 'd', 'b', 'e', 'c', 'f'}
print(list(itertools.chain(letters,letters[3:])))
#输出:['a', 'b', 'c', 'd', 'e', 'f', 'd', 'e', 'f']
for item in list(itertools.chain(letters,booleans)):
  print(item)

count()

生成无界限序列,count(start=0, step=1) ,示例从100开始,步长为2,循环10,打印对应值;必须手动break,count()会一直循环。

  i = 0
  for item in itertools.count(100,2):
    i += 1
    if i > 10 : break

    print(item) 

filterfalse()

 Python filterfalse(contintion,data) 迭代过滤条件为false的数据。如果条件为空,返回data中为false的项;

booleans = [1, 0, 1, 0, 0, 1]
numbers = [23, 20, 44, 32, 7, 12]
print(list(itertools.filterfalse(None,booleans)))
#输出:[0, 0, 0]
print(list(itertools.filterfalse(lambda x : x < 20,numbers)))
#输出:[23, 20, 44, 32]

compress()

返回我们需要使用的元素,根据b集合中元素真值,返回a集中对应的元素。

print(list(itertools.compress(letters,booleans)))
# ['a', 'c', 'f']

starmap()

针对list中的每一项,调用函数功能。starmap(func,list[]) ;

starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
>>> from itertools import *
>>> x = starmap(max,[[5,14,5],[2,34,6],[3,5,2]])
>>> for i in x:
>>> print (i)
14
34
5

repeat()

repeat(object[, times]) 重复times次;

repeat(10, 3) --> 10 10 10

dropwhile()

dropwhile(func, seq );当函数f执行返回假时, 开始迭代序列

dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1

takewhile()

takewhile(predicate, iterable);返回序列,当predicate为true是截止。

takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4

islice()

islice(seq[, start], stop[, step]);返回序列seq的从start开始到stop结束的步长为step的元素的迭代器

for i in islice("abcdef", 0, 4, 2):#a, c
  print i

product()

product(iter1,iter2, ... iterN, [repeat=1]);创建一个迭代器,生成表示item1,item2等中的项目的笛卡尔积的元组,repeat是一个关键字参数,指定重复生成序列的次数

  # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
  # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
for i in product([1, 2, 3], [4, 5], [6, 7]):
  print i
(1, 4, 6)
(1, 4, 7)
(1, 5, 6)
(1, 5, 7)
(2, 4, 6)
(2, 4, 7)
(2, 5, 6)
(2, 5, 7)
(3, 4, 6)
(3, 4, 7)
(3, 5, 6)
(3, 5, 7)

permutations()

permutations(p[,r]);返回p中任意取r个元素做排列的元组的迭代器

for i in permutations([1, 2, 3], 3):
  print i
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

combinations()

combinations(iterable,r);创建一个迭代器,返回iterable中所有长度为r的子序列,返回的子序列中的项按输入iterable中的顺序排序

note:不带重复

for i in combinations([1, 2, 3], 2):
  print i
(1, 2)
(1, 3)
(2, 3)

combinations_with_replacement()

同上, 带重复 例子:

for i in combinations_with_replacement([1, 2, 3], 2):
  print i
(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

应用示例

求质数序列中1,3,5,7,9,11,13,15三个数之和为35的三个数;

def get_three_data(data_list,amount):
  for data in list(itertools.combinations(data_list, 3)):
    if sum(data) == amount:
      print(data)
#(7, 13, 15)

更多python标准库使用方法请点击下面的相关文章

(0)

相关推荐

  • 在Python中使用itertools模块中的组合函数的教程

    理解新概念 Python V2.2 中引入了迭代器的思想.唔,这并不十分正确:这种思想的"苗头"早已出现在较老的函数 xrange() 以及文件方法 .xreadlines() 中了.通过引入 yield 关键字,Python 2.2 在内部实现的许多方面推广了这一概念,并使编程定制迭代器变得更为简单( yield 的出现使函数转换成生成器,而生成器反过来又返回迭代器). 迭代器背后的动机有两方面.将数据作为序列处理通常是最简单的方法,而以线性顺序处理的序列通常并不需要都同时实际 存在

  • Python使用itertools模块实现排列组合功能示例

    本文实例讲述了Python使用itertools模块实现排列组合功能.分享给大家供大家参考,具体如下: 一.笛卡尔积:itertools.product(*iterables[, repeat]) 直接对自身进行笛卡尔积: import itertools for i in itertools.product('ABCD', repeat = 2): print (''.join(i),end=' ') 输出结果: AA AB AC AD BA BB BC BD CA CB CC CD DA D

  • python 排列组合之itertools

    python 2.6 引入了itertools模块,使得排列组合的实现非常简单: 复制代码 代码如下: import itertools 有序排列:e.g., 4个数内选2个排列: 复制代码 代码如下: >>> print list(itertools.permutations([1,2,3,4],2))[(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4,

  • 详解Python的迭代器、生成器以及相关的itertools包

    对数学家来说,Python这门语言有着很多吸引他们的地方.举几个例子:对于tuple.lists以及sets等容器的支持,使用与传统数学类似的符号标记方式,还有列表推导式这样与数学中集合推导式和集的结构式(set-builder notation)很相似的语法结构. 另外一些很吸引数学爱好者的特性是Python中的iterator(迭代器).generator(生成器)以及相关的itertools包.这些工具帮助人们能够很轻松的写出处理诸如无穷序列(infinite sequence).随机过程

  • Python中itertools模块用法详解

    本文实例讲述了Python中itertools模块用法,分享给大家供大家参考.具体分析如下: 一般来说,itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用. chain(iter1, iter2, ..., iterN): 给出一组迭代器(iter1, iter2, ..., iterN),此函数创建一个新迭代器来将所有的迭代器链接起来,返回的迭代器从it

  • Python标准库之循环器(itertools)介绍

    在循环对象和函数对象中,我们了解了循环器(iterator)的功能.循环器是对象的容器,包含有多个对象.通过调用循环器的next()方法 (__next__()方法,在Python 3.x中),循环器将依次返回一个对象.直到所有的对象遍历穷尽,循环器将举出StopIteration错误. 在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束.使用iter()内置函数,我们可以将诸如表.字典等容器变为循环器.比如: 复制代码 代码如下: for i in ite

  • Python编程使用*解包和itertools.product()求笛卡尔积的方法

    本文实例讲述了Python编程使用*解包和itertools.product()求笛卡尔积的方法.分享给大家供大家参考,具体如下: [问题] 目前有一字符串s = "['a', 'b'],['c', 'd']",想把它分开成为两个列表: list1 = ['a', 'b'] list2 = ['c', 'd'] 之后使用itertools.product()求笛卡尔积,应该写成: for i in itertools.product(list1, list2): print i 结果为

  • Python itertools模块详解

    这货很强大, 必须掌握 文档 链接 http://docs.python.org/2/library/itertools.html pymotw 链接 http://pymotw.com/2/itertools/ 基本是基于文档的翻译和补充,相当于翻译了 itertools用于高效循环的迭代函数集合 组成 总体,整体了解 无限迭代器 复制代码 代码如下: 迭代器         参数         结果                                              

  • Python 过滤字符串的技巧,map与itertools.imap

    具体的实例 我们需要在目录中遍历,包括子目录(哈哈),找出所有后缀为:rmvb ,avi ,pmp 的文件.(天哪?!你要干什么?这可是我的隐私啊--) 复制代码 代码如下: import os def anyTrue(predicate, sequence): return True in map(predicate, sequence) def filterFiles(folder, exts): for fileName in os.listdir(folder): if os.path.

  • python中的itertools的使用详解

    今天了解了下python中内置模块itertools的使用,熟悉下,看能不能以后少写几个for,嘿嘿

  • 介绍Python中内置的itertools模块

    Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数. 首先,我们看看itertools提供的几个"无限"迭代器: >>> import itertools >>> natuals = itertools.count(1) >>> for n in natuals: ... print n ... 1 2 3 ... 因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只

  • Python标准库之itertools库的使用方法

    前言 因为最近事情不是很多,想写一些技术文章分享给大家,同时也对自己一段时间来碎片化接受的知识进行一下梳理,所谓写清楚才能说清楚,说清楚才能想清楚,就是这个道理了. 很多人都致力于把Python代码写得更Pythonic,一来更符合规范且容易阅读,二来一般Pythonic的代码在执行上也更有效率.今天就先给大家介绍一下Python的系统库itertools.下面话不多说了,来一起看看详细的介绍吧. itertools库 迭代器(生成器)在Python中是一种很常用也很好用的数据结构,比起列表(l

  • Python迭代器模块itertools使用原理解析

    这篇文章主要介绍了Python迭代器模块itertools使用原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 介绍 今天介绍一个很强大的模块,而且是python自带的,那就是itertools迭代器模块. 使用 使用起来很简单,先导入模块 import itertools 下面,我们通过一些例子边学边练 三个无限迭代器 先告诉大家 control + C 可以强制停止程序哦 1.count() num = itertools.count

  • 详解Python中的分组函数groupby和itertools)

    具体代码如下所示: from operator import itemgetter #itemgetter用来去dict中的key,省去了使用lambda函数 from itertools import groupby #itertool还包含有其他很多函数,比如将多个list联合起来.. d1={'name':'zhangsan','age':20,'country':'China'} d2={'name':'wangwu','age':19,'country':'USA'} d3={'nam

  • python利用itertools生成密码字典并多线程撞库破解rar密码

    脚本功能: 利用itertools生成密码字典(迭代器形式) 多线程并发从密码字典中取出密码进行验证 验证成功后把密码写入文件中保存 #!/usr/bin/env python # -*- coding: UTF-8 -*- # Author:Leslie-x import itertools as its import threading import rarfile import os words = '0123456789abcdefghijklmnopqrstuvwxyz' # 涉及到生

  • python中itertools模块zip_longest函数详解

    最近在看流畅的python,在看第14章节的itertools模块,对其itertools中的相关函数实现的逻辑的实现 其中在zip_longest(it_obj1, ..., it_objN, fillvalue=None)时,其函数实现的功能和内置zip函数大致相同(实现一一对应), 不过内置的zip函数是已元素最少对象为基准,而zip_longest函数是已元素最多对象为基准,使用fillvalue的值来填充 以下是自己总结此函数的大致实现方法,和官方方法不同: 思路大致如此: 找出元素个

随机推荐