解决Pytorch 加载训练好的模型 遇到的error问题

这是一个非常愚蠢的错误

debug的时候要好好看error信息

提醒自己切记好好对待error!切记!切记!

-----------------------分割线----------------

pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令

#保存整个网络和参数
torch.save(your_net, 'save_name.pkl')
#加载保存的模型
net = torch.load('save_name.pkl')

因为我比较懒我就想直接把整个网络都保存下来,然后在test文件中直接load一下不就好了?

就遭受了这样的错误。看错了error信息,把‘Net'看成‘net'。报错没有属性‘net'?这个不是我自己写的变量名么?

-----------------瞎捣鼓1h后(呵呵呵)----------------

回头看error,没有属性‘Net',Net???

我当下明白过来,应该是test文件中没有把它import进来,test中就没有任何关于Net的信息。我直接把定义的Net复制进了test.py,就顺利加载了训练好的模型。

但是我也有一个疑问,我理解的把整个模型保存难道不是把它的结构都保存下来了么?为什么还要再把这个网络import一次?来自python、pytorch、面向对象编程三次元小白的疑惑,先存个疑,搞懂了再来回答。

接下来试试只保存网络参数

#只保存网络参数
torch.save(your_net.state_dict(), 'save_name.pkl')
#加载保存的模型
net.load_state_dict(torch.load('save_name.pkl'))

保存网络参数

重新定义网络

报错

想死。。。

仔细看了报错信息,以我小白的理解,我感觉保存下来的可能只是单纯的数据,而不是一个对象(没有方法可以操作),或者该对象没有.copy()方法,所以没有办法进行.copy(),那肯定是保存哪里出错了。然后发现保存部分代码写错了,改成

print一下 net.state_dict和net.state_dict(),前者输出的是网络结构,后者才是网络的参数。

试着回答之前的问题,第二种保存模型的方法只保存了网络的参数(包括卷积层和全连接层每次的weight,bias),所以再加载模型的时候需要先定义网络无可厚非,就像训练时候定义网络那样定义就可以;而第一种保存整个网络的方法,保存了一个网络的实例(包括它的所有结构和参数),net是Net的一个实例,那为什么还要有Class Net的定义呢,还是回答不了。。

那就继续存疑,保持探究精神吧。。

以上这篇解决Pytorch 加载训练好的模型 遇到的error问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决Pytorch 训练与测试时爆显存(out of memory)的问题

    Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法. 使用torch.cuda.empty_cache()删除一些不需要的变量代码示例如下: try: output = model(input) except RuntimeError as exception: if "out of memory" in str(exception): print("WARNING: out of

  • pytorch载入预训练模型后,实现训练指定层

    1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.

  • pytorch 实现在预训练模型的 input上增减通道

    如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务 #增加一个通道 w = layers[0].weight layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) layers[0].weight = torch.nn.Parameter(torch.cat((w, w[:, :1, :, :]), dim=1)) #方式2 w =

  • pytorch 加载(.pth)格式的模型实例

    有一些非常流行的网络如 resnet.squeezenet.densenet等在pytorch里面都有,包括网络结构和训练好的模型. pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/ 按官网加载预训练好的模型: import torchvision.models as models # pretrained=True就可以使用预训练的模型 resnet18 = mod

  • Pytorch中实现只导入部分模型参数的方式

    我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected).我们搭建的网络对保存文件来说,有一部分参数也是没有的(missed).如果依旧使用torch.load(model.state_dict())的办法,就会出现 xxx expected,xxx missed类似的错误.那么在这种情况下,该如何导入模型呢? 好在Pytorch中的模型参数使用字典保存的,键是参数的名称,值是参数的具体数

  • 解决Pytorch 加载训练好的模型 遇到的error问题

    这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令 #保存整个网络和参数 torch.save(your_net, 'save_name.pkl') #加载保存的模型 net = torch.load('save_name.pkl') 因为我比较懒我就想直接把整个网络都保存下来,然

  • 解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题

    背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型权值参数不带module.本质上保存的权值文件是一个有序字典. 解决方法 1.在单卡环境下,用DataParallel包装模型. 2.自己重写Load函数,灵活.

  • pytorch 使用加载训练好的模型做inference

    前提: 模型参数和结构是分别保存的 1. 构建模型(# load model graph) model = MODEL() 2.加载模型参数(# load model state_dict) model.load_state_dict ( { k.replace('module.',''):v for k,v in torch.load(config.model_path, map_location=config.device).items() } ) model = self.model.to

  • 解决threeJS加载obj gltf模型后颜色太暗的方法

    目录 网上找到的部分解决方法 效果对比 总结 网上找到的部分解决方法 其实通过查找后不难发现网上给出了很多解决方法,但是大部分都无法从根本上解决问题.我之前看到有一篇文章对gltf的解决方法是让gltf增加自发光,相关的设置如下: 使用threeJS的过程中,刚开始总是会遇到些问题,就比如加载obj/gltf等带材质的模型时老是会出现显示效果较暗的问题. object.traverse((child) => { if(child.isMesh) { child.material.emissive

  • PyTorch加载自己的数据集实例详解

    数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力. 数据处理的质量对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练, 更会提高模型性能.为解决这一问题,PyTorch提供了几个高效便捷的工具, 以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载. 数据集存放大致有以下两种方式: (1)所有数据集放在一个目录下,文件名上附有标签名,数据集存放格式如下: root/cat_dog/cat.01.jpg root/cat_dog/cat.02.jpg ...

  • Pytorch加载部分预训练模型的参数实例

    前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直

  • pytorch加载自定义网络权重的实现

    在将自定义的网络权重加载到网络中时,报错: AttributeError: 'dict' object has no attribute 'seek'. You can only torch.load from a file that is seekable. Please pre-load the data into a buffer like io.BytesIO and try to load from it instead. 我们一步一步分析. 模型网络权重保存额代码是:torch.sa

  • pytorch加载自己的图像数据集实例

    之前学习深度学习算法,都是使用网上现成的数据集,而且都有相应的代码.到了自己开始写论文做实验,用到自己的图像数据集的时候,才发现无从下手 ,相信很多新手都会遇到这样的问题. 参考文章https://www.jb51.net/article/177613.htm 下面代码实现了从文件夹内读取所有图片,进行归一化和标准化操作并将图片转化为tensor.最后读取第一张图片并显示. # 数据处理 import os import torch from torch.utils import data fr

  • PyTorch加载数据集梯度下降优化

    目录 一.实现过程 1.准备数据 2.设计模型 3.构造损失函数和优化器 4.训练过程 5.结果展示 二.参考文献 一.实现过程 1.准备数据 与PyTorch实现多维度特征输入的逻辑回归的方法不同的是:本文使用DataLoader方法,并继承DataSet抽象类,可实现对数据集进行mini_batch梯度下降优化. 代码如下: import torch import numpy as np from torch.utils.data import Dataset,DataLoader clas

随机推荐