对tensorflow中cifar-10文档的Read操作详解

前言

在tensorflow的官方文档中得卷积神经网络一章,有一个使用cifar-10图片数据集的实验,搭建卷积神经网络倒不难,但是那个cifar10_input文件着实让我费了一番心思。配合着官方文档也算看的七七八八,但是中间还是有一些不太明白,不明白的mark一下,这次记下一些已经明白的。

研究

cifar10_input.py文件的read操作,主要的就是下面的代码:

if not eval_data:
  filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
         for i in xrange(1, 6)]
  num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
 else:
  filenames = [os.path.join(data_dir, 'test_batch.bin')]
  num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
...
filename_queue = tf.train.string_input_producer(filenames)

...

label_bytes = 1 # 2 for CIFAR-100
 result.height = 32
 result.width = 32
 result.depth = 3
 image_bytes = result.height * result.width * result.depth
 # Every record consists of a label followed by the image, with a
 # fixed number of bytes for each.
 record_bytes = label_bytes + image_bytes

 # Read a record, getting filenames from the filename_queue. No
 # header or footer in the CIFAR-10 format, so we leave header_bytes
 # and footer_bytes at their default of 0.
 reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
 result.key, value = reader.read(filename_queue)

 ...

 if shuffle:
  images, label_batch = tf.train.shuffle_batch(
    [image, label],
    batch_size=batch_size,
    num_threads=num_preprocess_threads,
    capacity=min_queue_examples + 3 * batch_size,
    min_after_dequeue=min_queue_examples)
 else:
  images, label_batch = tf.train.batch(
    [image, label],
    batch_size=batch_size,
    num_threads=num_preprocess_threads,
    capacity=min_queue_examples + 3 * batch_size)

开始并不明白这段代码是用来干什么的,越看越糊涂,因为之前使用tensorflow最多也就是使用哪个tf.placeholder()这个操作,并没有使用tensorflow自带的读写方法来读写,所以上面的代码看的很费劲儿。不过我在官方文档的How-To这个document中看到了这个东西:

Batching

def read_my_file_format(filename_queue):
 reader = tf.SomeReader()
 key, record_string = reader.read(filename_queue)
 example, label = tf.some_decoder(record_string)
 processed_example = some_processing(example)
 return processed_example, label

def input_pipeline(filenames, batch_size, num_epochs=None):
 filename_queue = tf.train.string_input_producer(
   filenames, num_epochs=num_epochs, shuffle=True)
 example, label = read_my_file_format(filename_queue)
 # min_after_dequeue defines how big a buffer we will randomly sample
 #  from -- bigger means better shuffling but slower start up and more
 #  memory used.
 # capacity must be larger than min_after_dequeue and the amount larger
 #  determines the maximum we will prefetch. Recommendation:
 #  min_after_dequeue + (num_threads + a small safety margin) * batch_size
 min_after_dequeue = 10000
 capacity = min_after_dequeue + 3 * batch_size
 example_batch, label_batch = tf.train.shuffle_batch(
   [example, label], batch_size=batch_size, capacity=capacity,
   min_after_dequeue=min_after_dequeue)
 return example_batch, label_batch

感觉豁然开朗,再研究一下其官方文档API就能大约明白期间意思。最有代表性的图示官方文档中也给出来了,虽然官方文档给的解释并不多。

API我就不一一解释了,我们下面通过实验来明白。

实验

首先在tensorflow路径下创建两个文件,分别命名为test.txt以及test2.txt,其内容分别是:

test.txt:

test line1
test line2
test line3
test line4
test line5
test line6

test2.txt:

test2 line1
test2 line2
test2 line3
test2 line4
test2 line5
test2 line6

然后再命令行里依次键入下面的命令:

import tensorflow as tf
filenames=['test.txt','test2.txt']
#创建如上图所示的filename_queue
filename_queue=tf.train.string_input_producer(filenames)
#选取的是每次读取一行的TextLineReader
reader=tf.TextLineReader()
init=tf.initialize_all_variables()
#读取文件,也就是创建上图中的Reader
key,value=reader.read(filename_queue)
#读取batch文件,batch_size设置成1,为了方便看
bs=tf.train.batch([value],batch_size=1,num_threads=1,capacity=2)
sess=tf.Session()
#非常关键,这个是连通各个queue图的关键
tf.train.start_queue_runners(sess=sess)
#计算有reader的输出
b=reader.num_records_produced()

然后我们执行:

>>> sess.run(bs)
array(['test line1'], dtype=object)
>>> sess.run(b)
4
>>> sess.run(bs)
array(['test line2'], dtype=object)
>>> sess.run(b)
5
>>> sess.run(bs)
array(['test line3'], dtype=object)
>>> sess.run(bs)
array(['test line4'], dtype=object)
>>> sess.run(bs)
array(['test line5'], dtype=object)
>>> sess.run(bs)
array(['test line6'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test2 line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line3'], dtype=object)
>>> sess.run(bs)
array(['test2 line4'], dtype=object)
>>> sess.run(bs)
array(['test2 line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line6'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test2 line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line3'], dtype=object)
>>> sess.run(bs)
array(['test2 line4'], dtype=object)
>>> sess.run(bs)
array(['test2 line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line6'], dtype=object)
>>> sess.run(bs)
array(['test line1'], dtype=object)

我们发现,当batch_size设置成为1的时候,bs的输出是按照文件行数进行逐步打印的,原因是,我们选择的是单个Reader进行操作的,这个Reader先将test.txt文件读取,然后逐行读取并将读取的文本送到example queue(如上图)中,因为这里batch设置的是1,而且用到的是tf.train.batch()方法,中间没有shuffle,所以自然而然是按照顺序输出的,之后Reader再读取test2.txt。但是这里有一个疑惑,为什么reader.num_records_produced的第一个输出不是从1开始的,这点不太清楚。 另外,打印出filename_queue的size:

>>> sess.run(filename_queue.size())
32

发现filename_queue的size有32个之多!这点也不明白。。。

我们可以更改实验条件,将batch_size设置成2,会发现也是顺序的输出,而且每次输出为2行文本(和batch_size一样)

我们继续更改实验条件,将tf.train.batch方法换成tf.train.shuffle_batch方法,文本数据不变:

import tensorflow as tf
filenames=['test.txt','test2.txt']
filename_queue=tf.train.string_input_producer(filenames)
reader=tf.TextLineReader()
init=tf.initialize_all_variables()
key,value=reader.read(filename_queue)
bs=tf.train.shuffle_batch([value],batch_size=1,num_threads=1,capacity=4,min_after_dequeue=2)
sess=tf.Session()
tf.train.start_queue_runners(sess=sess)
b=reader.num_records_produced()

继续刚才的执行:

>>> sess.run(bs)
array(['test2 line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line6'], dtype=object)
>>> sess.run(bs)
array(['test2 line4'], dtype=object)
>>> sess.run(bs)
array(['test2 line3'], dtype=object)
>>> sess.run(bs)
array(['test line1'], dtype=object)
>>> sess.run(bs)
array(['test line2'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test line4'], dtype=object)
>>> sess.run(bs)
array(['test line5'], dtype=object)
>>> sess.run(bs)
array(['test2 line1'], dtype=object)
>>> sess.run(bs)
array(['test line3'], dtype=object)

我们发现的是,使用了shuffle操作之后,明显的bs的输出变得不一样了,变得没有规则,然后我们看filename_queue的size:

>>> sess.run(filename_queue.size())
32

发现也是32,由此估计是tensorflow会根据文件大小默认filename_queue的长度。 注意这里面的capacity=4,min_after_dequeue=2这些个命令,capacity指的是example queue的最大长度, 而min_after_dequeue是指在出队列之后,example queue最少要保留的元素个数,为什么需要这个,其实是为了混合的更显著。也正是有这两个元素,让shuffle变得可能。

到这里基本上大概的思路能明白,但是上面的实验都是对于单个的Reader,和上一节的图不太一致,根据官网教程,为了使用多个Reader,我们可以这样:

import tensorflow as tf
filenames=['test.txt','test2.txt']
filename_queue=tf.train.string_input_producer(filenames)
reader=tf.TextLineReader()
init=tf.initialize_all_variables()
key_list,value_list=[reader.read(filename_queue) for _ in range(2)]
bs2=tf.train.shuffle_batch_join([value_list],batch_size=1,capacity=4,min_after_dequeue=2)
sess=tf.Session()
sess.run(init)
tf.train.start_queue_runners(sess=sess)

运行的结果如下:

>>> sess.run(bs2)
[array(['test2.txt:2'], dtype=object), array(['test2 line2'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:5'], dtype=object), array(['test2 line5'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:6'], dtype=object), array(['test2 line6'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:4'], dtype=object), array(['test2 line4'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:3'], dtype=object), array(['test2 line3'], dtype=object)]
>>> sess.run(bs2)
[array(['test2.txt:1'], dtype=object), array(['test2 line1'], dtype=object)]
>>> sess.run(bs2)
[array(['test.txt:4'], dtype=object), array(['test line4'], dtype=object)]
>>> sess.run(bs2)
[array(['test.txt:3'], dtype=object), array(['test line3'], dtype=object)]
>>> sess.run(bs2)
[array(['test.txt:2'], dtype=object), array(['test line2'], dtype=object)]

以上这篇对tensorflow中cifar-10文档的Read操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 详谈tensorflow gfile文件的用法

    一.gfile模块是什么 gfile模块定义在tensorflow/python/platform/gfile.py,但其源代码实现主要位于tensorflow/tensorflow/python/lib/io/file_io.py,那么gfile模块主要功能是什么呢? google上的定义为: 翻译过来为: 没有线程锁的文件I / O操作包装器 ...对于TensorFlow的tf.gfile模块来说是一个特别无用的描述! tf.gfile模块的主要角色是: 1.提供一个接近Python文件对

  • 详解Tensorflow数据读取有三种方式(next_batch)

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • tensorflow之并行读入数据详解

    最近研究了一下并行读入数据的方式,现在将自己的理解整理如下,理解比较浅,仅供参考. 并行读入数据主要分 1. 创建文件名列表 2. 创建文件名队列 3. 创建Reader和Decoder 4. 创建样例列表 5. 创建批列表(读取时可要可不要,一般情况下样例列表可以执行读取数据操作,但是在实际训练的时候往往需要批列表来分批进行数据的组织,提取) 其具体流程如下: 一. 文件名列表: 文件名列表是一个list类型的数据,里面的内容是需要用的数据文件名.可以使用常规的python语法入:[file1

  • Tensorflow分批量读取数据教程

    之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1).如果加入batch,比如batch大小为5,那么拿到的tensor的r

  • 利用Tensorflow的队列多线程读取数据方式

    在tensorflow中,有三种方式输入数据 1. 利用feed_dict送入numpy数组 2. 利用队列从文件中直接读取数据 3. 预加载数据 其中第一种方式很常用,在tensorflow的MNIST训练源码中可以看到,通过feed_dict={},可以将任意数据送入tensor中. 第二种方式相比于第一种,速度更快,可以利用多线程的优势把数据送入队列,再以batch的方式出队,并且在这个过程中可以很方便地对图像进行随机裁剪.翻转.改变对比度等预处理,同时可以选择是否对数据随机打乱,可以说是

  • TensorFlow实现从txt文件读取数据

    TensorFlow从txt文件中读取数据的方法很多有种,我比较常用的是下面两种: [1]np.loadtxt import numpy as np data=np.loadtxt('ex1data1.txt',dtype='float',delimiter=',') X_train=data[:,0] y_train=data[:,1] [2]pd.read_csv import pandas as pd data=pd.read_csv("ex2data2.txt",names=[

  • 对tensorflow中cifar-10文档的Read操作详解

    前言 在tensorflow的官方文档中得卷积神经网络一章,有一个使用cifar-10图片数据集的实验,搭建卷积神经网络倒不难,但是那个cifar10_input文件着实让我费了一番心思.配合着官方文档也算看的七七八八,但是中间还是有一些不太明白,不明白的mark一下,这次记下一些已经明白的. 研究 cifar10_input.py文件的read操作,主要的就是下面的代码: if not eval_data: filenames = [os.path.join(data_dir, 'data_b

  • java EasyExcel面向Excel文档读写逻辑示例详解

    目录 正文 1 快速上手 1.1 引入依赖 1.2 导入与导出 2 实现原理 2.1 @RequestExcel 与 @ResponseExcel 解析器 2.2 RequestMappingHandlerAdapter 后置处理器 3 总结 正文 EasyExcel是一款由阿里开源的 Excel 处理工具.相较于原生的Apache POI,它可以更优雅.快速地完成 Excel 的读写功能,同时更加地节约内存. 即使 EasyExcel 已经很优雅了,但面向 Excel 文档的读写逻辑几乎千篇一

  • Flask实现swagger在线文档与接口测试流程详解

    目录 1.什么是restful 2.swagger/openAPI能做什么 3.python如何实现swagger 4.flasgger的使用案例 5.完整代码 阅读对象:知道什么是restful,有了解swagger或者openAPI更佳. 1.什么是restful Representional State Transfer(REST):表征状态转移.是一种一种基于HTTP协议的架构.采用Web 服务使用标准的 HTTP 方法 (GET/PUT/POST/DELETE) 将所有 Web 系统的

  • 对Tensorflow中权值和feature map的可视化详解

    前言 Tensorflow中可以使用tensorboard这个强大的工具对计算图.loss.网络参数等进行可视化.本文并不涉及对tensorboard使用的介绍,而是旨在说明如何通过代码对网络权值和feature map做更灵活的处理.显示和存储.本文的相关代码主要参考了github上的一个小项目,但是对其进行了改进. 原项目地址为(https://github.com/grishasergei/conviz). 本文将从以下两个方面进行介绍: 卷积知识补充 网络权值和feature map的可

  • MySQL中int(10)和int(11)的区别详解

    目录 一.背景 二.MySQL整数类型 总结: 一.背景 在创建数据库表的时候,我们经常会用到int(x)来定义一个字段的类型,一直误以为这里的x表示存储数字的长度. 其实大错特错,这里的 x 指的是 最大显示宽度(最大有效显示宽度是255),且显示宽度与存储大小或类型包含的值的范围无关. 二.MySQL整数类型 类型 字节 取值范围 显示宽度 tinyint 1 -128 ~ 127 4 smallint 2 -32768 ~ 32767 6 mediumint 3 -8388608 ~ 83

  • Element中table组件按照属性执行合并操作详解

    在实际开发中,要求使用elementUI的table组件对表格数据上下行相邻相同的数据进行合并,在elem官网上查看到是有对应的组件和合并方法 <el-table :data="tableData" :span-method="objectSpanMethod"> <el-table-column prop="id" label="ID" width="180"> </el-t

  • .NET Core利用swagger进行API接口文档管理的方法详解

    一.问题背景 随着技术的发展,现在的开发模式已经更多的转向了前后端分离的模式,在前后端开发的过程中,联系的方式也变成了API接口,但是目前项目中对于API的管理很多时候还是通过手工编写文档,每次的需求变更只要涉及到接口的变更,文档都需要进行额外的维护,如果有哪个小伙伴忘记维护,很多时候就会造成一连续的问题,那如何可以更方便的解决API的沟通问题?Swagger给我们提供了一个方式,由于目前主要我是投入在.NET Core项目的开发中,所以以.NET Core作为示例 二.什么是Swagger S

  • nodejs实现一个word文档解析器思路详解

    之前项目里遇到一个需求,需要前端上传一个word文档,然后后端提取出该文档的指定位置的内容并保存.这里后端用的是nodejs,开始接到这个需求,发现无从下手,主要是没有处理过word这种类型的文档,怎么解析? Excel倒是有相关的库可以用,而且很简单 思路 搜索了好一会儿,在npm上发现了一个叫做 adm-zip 的包,这个包可以解压缩word文档,原来word文档也是可以解压缩的,之前一直不知道,通过如下代码就可以将word文档解压缩,并进一步提取内容 var admZip = requir

  • Java非侵入式API接口文档工具apigcc用法详解

    一个非侵入的api编译.收集.Rest文档生成工具.工具通过分析代码和注释,获取文档信息,生成RestDoc文档 前言 程序员一直以来都有一个烦恼,只想写代码,不想写文档.代码就表达了我的思想和灵魂. Python提出了一个方案,叫docstring,来试图解决这个问题.即编写代码,同时也能写出文档,保持代码和文档的一致.docstring说白了就是一堆代码中的注释.Python的docstring可以通过help函数直接输出一份有格式的文档,本工具的思想与此类似. 代码即文档 Apigcc是一

  • TensorFlow基本的常量、变量和运算操作详解

    简介 深度学习需要熟悉使用一个框架,本人选择了TensorFlow,一边学习一边做项目,下面简要介绍TensorFlow中的基本常量.变量和运算操作,参考斯坦福大学的cs20si和TensorFlow官网API. 常量 tf.constant() tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False),value为值,dtype类型,shape为张量形状,name名称.verify_shape默认F

随机推荐