tensorflow 自定义损失函数示例代码

这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变)

我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元。

如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的)。

显然,我宁愿预估多了,也不想预估少了。

所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样。

(yhat沿用吴恩达课堂中的叫法)

import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
# 两个输入节点
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
# 回归问题一般只有一个输出节点
y_ = tf.placeholder(tf.float32, shape=(None, 1), name="y-input")
# 定义了一个单层的神经网络前向传播的过程,这里就是简单加权和
w1 = tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w1)
# 定义预测多了和预测少了的成本
loss_less = 10
loss_more = 1
#在windows下,下面用这个where替代,因为调用tf.select会报错
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_)*loss_more, (y_-y)*loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
#通过随机数生成一个模拟数据集
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
"""
设置回归的正确值为两个输入的和加上一个随机量,之所以要加上一个随机量是
为了加入不可预测的噪音,否则不同损失函数的意义就不大了,因为不同损失函数
都会在能完全预测正确的时候最低。一般来说,噪音为一个均值为0的小量,所以
这里的噪音设置为-0.05, 0.05的随机数。
"""
Y = [[x1 + x2 + rdm.rand()/10.0-0.05] for (x1, x2) in X]
with tf.Session() as sess:
  init = tf.global_variables_initializer()
  sess.run(init)
  steps = 5000
  for i in range(steps):
    start = (i * batch_size) % dataset_size
    end = min(start + batch_size, dataset_size)
    sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
  print(sess.run(w1))

[[ 1.01934695]
[ 1.04280889]

最终结果如上面所示。

因为我们当初生成训练数据的时候,y是x1 + x2,所以回归结果应该是1,1才对。
但是,由于我们加了自己定义的损失函数,所以,倾向于预估多一点。

如果,我们将loss_less和loss_more对调,我们看一下结果:

[[ 0.95525807]
[ 0.9813394 ]]

通过这个例子,我们可以看出,对于相同的神经网络,不同的损失函数会对训练出来的模型产生重要的影响。

引用:以上实例为《Tensorflow实战 Google深度学习框架》中提供。

总结

以上所述是小编给大家介绍的tensorflow 自定义损失函数示例,希望对大家有所帮助!

(0)

相关推荐

  • 对Tensorflow中的变量初始化函数详解

    Tensorflow 提供了7种不同的初始化函数: tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值. 假设在卷积层中,设置偏执项b为0,则写法为: 1. bias_initializer=tf.constant_initializer(0) 2. bias_initializer=tf.zeros_initializer(0) tf.random_normal_initializer(mean,stddev) #功能是将变量初始化为

  • TensorFlow损失函数专题详解

    一.分类问题损失函数--交叉熵(crossentropy) 交叉熵刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数.给定两个概率分布p和q,交叉熵刻画的是两个概率分布之间的距离: 我们可以通过Softmax回归将神经网络前向传播得到的结果变成交叉熵要求的概率分布得分.在TensorFlow中,Softmax回归的参数被去掉了,只是一个额外的处理层,将神经网络的输出变成一个概率分布. 代码实现: import tensorflow as tf y_ = tf.constant([[1.

  • 关于Tensorflow中的tf.train.batch函数的使用

    这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂.也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写.经过这两天的文档以及相关资料,并且请教了国内的师弟.今天算是有点小感受了.简单的说,就是计算图是从一个管道中读取数据的,录入管道是用的现成的方法,读取也是.为了保证多线程的时候从一个管道读取数据不会乱吧,所以这种时候 读取的时候需要线程管理的相关操作.今天我实验室了一个简单的操作,就是给一个有序的数据,看看读出来是不是有序的,结果发现是有序的,所以

  • 对Tensorflow中的矩阵运算函数详解

    tf.diag(diagonal,name=None) #生成对角矩阵 import tensorflowas tf; diagonal=[1,1,1,1] with tf.Session() as sess: print(sess.run(tf.diag(diagonal))) #输出的结果为[[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]] tf.diag_part(input,name=None) #功能与tf.diag函数相反,返回对角阵的对角元素 imp

  • TensorFlow自定义损失函数来预测商品销售量

    在预测商品销量时,如果预测多了(预测值比真实销量大),商家损失的是生产商品的成本:而如果预测少了(预测值比真实销量小),损失的则是商品的利润.因为一般商品的成本和商品的利润不会严格相等,比如如果一个商品的成本是1元,但是利润是10元,那么少预测一个就少挣10元:而多预测一个才少挣1元,所以如果神经网络模型最小化的是均方误差损失函数,那么很有可能此模型就无法最大化预期的销售利润. 为了最大化预期利润,需要将损失函数和利润直接联系起来,需要注意的是,损失函数定义的是损失,所以要将利润最大化,定义的损

  • tensorflow 自定义损失函数示例代码

    这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的). 显然,我宁愿预估多了,也不想预估少了. 所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样. (yhat沿用吴恩达课堂中的叫法) import tensorflo

  • vue2.0自定义指令示例代码详解

    1.什么是指令? 指令通常以"v-"作为前缀, 以方便Vue知道你在使用一种特殊的标记. 除了 Vue 核心携带着的一些默认指令(v-model 和 v-show)之外, Vue 还允许你注册自己的自定义指令.某些情况下,还是需要对普通元素进行一些底层 DOM 访问, 这也是自定义指令仍然有其使用场景之处. 2.全局指令: 当页面加载时,元素将获取焦点,事实上,在访问页面时,如果你还没有点击任何地方,上面的输入框现在应该处于获取焦点的状态.现在让我们构建指令以完成此效果: <te

  • Jquery实现自定义tooltip示例代码

    Jquery实现自定义tooltip,具体代码如下 复制代码 代码如下: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="WebApplication247.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran

  • jtable列中自定义button示例代码

    复制代码 代码如下: Information: { title: 'Info', width: '5%', sorting: false, edit: true, create: true, type:'textarea', display: function (customerData) { var $img = $('<img src="content/images/document_properties.png" title="View and edit info

  • Tensorflow 实现线性回归模型的示例代码

    目录 1.线性与非线性回归 案例讲解 1.数据集 2.读取训练数据Income.csv并可视化展示 3.利用Tensorflow搭建和训练神经网络模型[线性回归模型的建立] 4. 模型预测 1.线性与非线性回归 线性回归 Linear Regression:两个变量之间的关系是一次函数关系的——图像是直线,叫做线性.线性是指广义的线性,也就是数据与数据之间的关系,如图x1. 非线性回归:两个变量之间的关系不是一次函数关系的——图像不是直线,叫做非线性,如图x2. 一元线性回归:只包括一个自变量和

  • Bootstrap弹出框之自定义悬停框标题、内容和样式示例代码

    1.Bootstrap弹出框示例 <button type="button" class="btn btn-lg btn-danger" data-toggle="popover" title="Popover title" data-content="And here's some amazing content. It's very engaging. Right?">点我弹出/隐藏弹出框&

  • Laravel 5.5 的自定义验证对象/类示例代码详解

    Laravel 5.5 将提供一个全新的自定义验证规则的对象,以作为原来的 Validator::extend 方法的替代. Laravel 5.5 将提供一个全新的自定义验证规则的对象,以作为原来的 Validator::extend 方法的替代..很多时候我们会直接用正则表达式来处理这种特殊的验证,也有时候我们会选择用 Validator::extend 来扩展一个自定义的规则.但在 Laravel 5.5 版本中,我们有了新的手段,只要定义一个实现 Illuminate\Contracts

  • jquery自定义插件——window的实现【示例代码】

    本例子实现弹窗的效果: 1.jquery.show.js /* * 实现功能:点击在鼠标位置显示div * 版本序号:1.0 */ (function($){ $.fn.showDIV = function(options){ var defaults = {}; var options = $.extend(defaults, options); var showdiv=$(this); var close, title, content; close=$(" "); title=$

  • Android自定义滑动验证条的示例代码

    本文介绍了Android自定义滑动验证条的示例代码,分享给大家,具体如下: *注:不知道为什么,h5的标签在这里没用了,所以我也只能用Markdown的语法来写了 项目地址:https://github.com/994866755/handsomeYe.seekbar.github.io 需求: 在我们的某些应用中需要滑动验证.比如说这个样子的: 刚开始我也很懵逼要怎么去弄,结果我去看了一些人的代码,有人是用自定义viewgroup去做,就是viewgroup包含滑动块和滑动条.但我觉得太麻烦,

随机推荐