opencv-python的RGB与BGR互转方式

一、格式转换

opencv读取图片的默认像素排列是BGR,需要转换。PIL库是RGB格式。

caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。

在Python中,将RGB顺序的图像转成BGR顺序,需要调整channel dimension的各颜色通道顺序。

方法1:

img = cv2.imread("001.jpg")

img_ = img[:,:,::-1].transpose((2,0,1))

① 在opencv里,图格式HWC,其余都是CHW,故transpose((2,0,1))

② img[:,:,::-1]对应H、W、C,彩图是3通道,即C是3层。opencv里对应BGR,故通过C通道的 ::-1 就是把BGR转为RGB

注: [::-1] 代表顺序相反操作

③ 若不涉及C通道的BGR转RGB,如Img[:,:,0]代表B通道,也就是蓝色分量图像;Img[:,:,1]代表G通道,也就是绿色分量图像;Img[:,:,2]代表R通道,也就是红色分量图像。

方法2:

使用opencv自带函数转换图像的R通道和B通道。

RGB -> BGR

img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)

BGR->RGB

img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

方法3:

BRG转RGB

rgb = bgr[...,::-1]

RGB转BGR

bgr = rgb[...,::-1]

RGB转GBR

gbr = rgb[...,[2,0,1]]

二、其他

添加Batch项一般是caffe2图像预处理的最后一步,在经过RGB->BGR,图像增强以及HWC->CHW后,还需要在CHW前添加一个第四维N以记录图像样本数量(即batchsize),所以输入caffe的图像格式为(N,C,H,W),其中颜色通道C的顺序是BGR。

但是对于TensorFlow这个顺序有差别。TensorFlow有两种数据格式NHWC和NCHW,默认的数据格式是NHWC,可以通过参数data_format指定数据格式。设置为 “NHWC” 时,排列顺序为 [batch, height, width, channels];设置为 “NCHW” 时,排列顺序为 [batch, channels, height, width]。

两种数据格式的转换:

NHWC –> NCHW:

import tensorflow as tf
x = tf.reshape(tf.range(24), [1, 3, 4, 2])
out = tf.transpose(x, [0, 3, 1, 2])

NCHW –> NHWC:

import tensorflow as tf
x = tf.reshape(tf.range(24), [1, 2, 3, 4])
out = tf.transpose(x, [0, 2, 3, 1])

补充知识:浅谈opencv使用BGR而非RGB的原因

使用opencv读取图片时, 默认的通道顺序是BGR而非RGB,在RGB为主流的当下, 这种默认给我们带来了一点不便。那么, opencv 为什么要使用BGR而非RGB呢?

目前看到的一种解释说是因为历史原因:早期BGR也比较流行,opencv一开始选择了BGR,到后来即使RGB成为主流,但也不好改了。

(这个观点未经考证,也没有严肃考证的动力, 在“碰到”新的不同解释前, 估且就这么认为吧)

References

https://stackoverflow.com/questions/14556545/why-opencv-using-bgr-colour-space-instead-of-rgb

以上这篇opencv-python的RGB与BGR互转方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch中Tensor与各种图像格式的相互转化详解

    前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片.而且使用不同图像处理库读取出来的图片格式也不相同,因此,如何在pytorch中正确转化各种图片格式(PIL.numpy.Tensor)是一个在调试中比较重要的问题. 本文主要说明在pytorch中如何正确将图片格式在各种图像库读取格式以及tensor向量之间转化的问题.以下代码经过测试都可以在Pytorch-0.4.0或0.3.0版本直接使用. 对py

  • Python+OpenCV实现将图像转换为二进制格式

    在学习tensorflow的过程中,有一个问题,tensorflow在训练的过程中读取的是二进制图像数据库文件,而不是图像文件,因此 在进行训练.测试之前需要将图像文件转换为二进制格式. 下面是我在ubuntu中使用python+OpenCV读取图像并转换为二进制格式文件的代码. #coding=utf-8 ''' Created on 2016年3月24日 使用Opencv读取图像将其保存为二进制格式文件,再读取该二进制文件,转换为图像进行显示 @author: hanchao ''' imp

  • OpenCV+Python--RGB转HSI的实现

    cv2.cvtColor函数封装了各种颜色空间之间的转换,唯独没有RGB与HSI之间的转换,网上查来查去也只有C++或MATLAB版本的,自己要用到python里,所以就写写python版本的. HSI颜色模型是一个满足计算机数字化颜色管理需要的高度抽象模拟的数学模型.HIS模型是从人的视觉系统出发,直接使用颜色三要素–色调(Hue).饱和度(Saturation)和亮度(Intensity,有时也翻译作密度或灰度)来描述颜色. RGB向HSI模型的转换是由一个基于笛卡尔直角坐标系的单位立方体向

  • Python Opencv提取图片中某种颜色组成的图形的方法

    主要目标识别图中红色的裂缝,尝试了几种不同的方法,最后发现比较每一点的RGB差值可以很好的解决这个问题,也就是提取图片中的红色相关信息.处理结果如下: 实现的代码如下,注意opencv读入的图片通道顺序是bgr: import cv2 import matplotlib.pyplot as plt imagepath = r'tear/11.jpg' image = cv2.imread(imagepath) height,width,channel = image.shape for i in

  • opencv-python的RGB与BGR互转方式

    一.格式转换 opencv读取图片的默认像素排列是BGR,需要转换.PIL库是RGB格式. caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB. 在Python中,将RGB顺序的图像转成BGR顺序,需要调整channel dimension的各颜色通道顺序. 方法1: img = cv2.imread("001.jpg") img_ = img[:,:,::-1].transpose((2,

  • opencv+python实现鼠标点击图像,输出该点的RGB和HSV值

    我就废话不多说了,大家还是直接看代码吧! import cv2 # 读取图片并缩放方便显示 img = cv2.imread('D:/6.jpg') height, width = img.shape[:2] size = (int(width * 0.2), int(height * 0.2)) # 缩放 img = cv2.resize(img, size, interpolation=cv2.INTER_AREA) # BGR转化为HSV HSV = cv2.cvtColor(img, c

  • Python 实现OpenCV格式和PIL.Image格式互转

    OpenCV转换成PIL.Image格式: import cv2 from PIL import Image import numpy img = cv2.imread("plane.jpg") cv2.imshow("OpenCV",img) image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB)) image.show() cv2.waitKey() PIL.Image转换成OpenCV格式: im

  • Python+Opencv实现把图片、视频互转的示例

    1. 安装Opencv包 pip install opvencv-python 2.实现代码: 视频转为图片: import cv2 cap=cv2.VideoCapture('E:/video/video-02.mp4') # 获取一个视频打开cap isOpened=cap.isOpened # 判断是否打开 print(isOpened) fps=cap.get(cv2.CAP_PROP_FPS) print(fps) # 获取宽度 width=int(cap.get(cv2.CAP_PR

  • Opencv+Python 色彩通道拆分及合并的示例

    一.图像色彩通道拆分 import cv2 img1 = cv2.imread(r"D:\OpencvTest\example.jpg", cv2.IMREAD_COLOR) # 传入一张彩色图片 b, g, r = cv2.split(img1) cv2.imshow("exampleB", b) # 展示B通道图 cv2.imshow("exampleG", g) cv2.imshow("exampleR", r) B通道

  • Python实现RGB与HSI颜色空间的互换方式

    概要 这是这学期数字图像处理课的第一份作业好久没懂python手都快生了,调了好久才搞出来. HSI颜色模型是一个满足计算机数字化颜色管理需要的高度抽象模拟的数学模型.HIS模型是从人的视觉系统出发,直接使用颜色三要素–色调(Hue).饱和度(Saturation)和亮度(Intensity,有时也翻译作密度或灰度)来描述颜色. RGB向HSI模型的转换是由一个基于笛卡尔直角坐标系的单位立方体向基于圆柱极坐标的双锥体的转换.基本要求是将RGB中的亮度因素分离,通常将色调和饱和度统称为色度,用来表

  • Python 图片转数组,二进制互转操作

    前言 需要导入以下包,没有的通过pip安装 import matplotlib.pyplot as plt import cv2 from PIL import Image from io import BytesIO import numpy as np 1.图片和数组互转 # 图片转numpy数组 img_path = "images/1.jpg" img_data = cv2.imread(img_path) # numpy数组转图片 img_data = np.linspace

  • opencv python简易文档之图像处理算法

    目录 将图片转为灰度图 HSV 图像阈值 图像平滑 形态学-腐蚀操作 形态学-膨胀操作 开运算与闭运算 梯度运算 礼帽与黑帽 图像梯度处理 Canny边缘检测 图像金字塔 图像轮廓 直方图 直方图均衡化: 自适应均衡化: 傅里叶变换 模板匹配 总结 上一篇已经给大家介绍了opencv python图片基本操作的相关内容,这里继续介绍图像处理算法,下面来一起看看吧 将图片转为灰度图 import cv2 #opencv读取的格式是BGR img=cv2.imread('cat.jpg') # 将图

  • opencv python简易文档之图片基本操作指南

    前言 最近在学习opencv,使用的是python接口.于是想着写些相关的笔记供以后参考,有不足之处希望大家指出. 使用python学习opencv需要下载opencv第三方库. 使用pip安装即可. 安装命令: pip install opencv-python pip install opencv-contrib-python(opencv的贡献库) 引入opencv import cv2 读取图片: img=cv2.imread('cat.jpg') # cat.jpg路径为相对路径 #

  • Python实现图片与视频互转代码实战(亲测有效)

    一. 图片转视频 任务需求背景 在标注数据的过程中,需要[反复]浏览大量图片(万张以上的数量级),确认图片中的目标类别以及室内户型布局.但是,在电脑上浏览图片有很大的不足:(a)需要持续点击鼠标或者键盘:(b)图片加载跟不上点击速度. 值得注意的是:网上有很多代码(图片转视频),但是真正能用的几乎很少,本博文的代码经过测试,可以成功生成视频. 代码依赖库 opencv-python==4.5.2 numpy==1.19.2 glob(python自带模块) 代码实战 基本步骤如下: a. 使用g

随机推荐