Python和Matlab实现蝙蝠算法的示例代码

目录
  • 1前言
  • 2 蝙蝠算法原理细讲
  • 3 详细步骤
  • 4Python实现
    • 4.1代码
    • 4.2结果
  • 5Matlab实现
    • 5.1 代码
    • 5.2 结果
    • 5.3 展望

1 前言

蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法。该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度。该算法具有实现简单、参数少等特点

该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现函数的寻优。以一只蝙蝠作为基本单元,且每只蝙蝠都有一个适应值来对函数解空间进行优化。每只蝙蝠可以调整自身发射声波的响度、频率等对空间进行搜索,使整个种群的活动逐步由无序变为有序。但蝙蝠算法在寻优末段容易陷入局部的极值,本文引入变速度权重因子修正系数(和粒子群参数调整的自适应过程相似),尽可能避免局部极值的困境,从而达到全局寻优的效果。

2 蝙蝠算法原理细讲

首先在自变量范围内产生蝙蝠的随机位置;

然后每个蝙蝠向周围某处移动,飞行靠声波反馈来更变方向,又向周围移动是随机的,蝙蝠下一时刻移动到某一位置有一定的出现频率,所以本文在运动公式中加了声波和频率两个因素。每一时刻的位移看作是一次飞行,每次飞行的距离很短(距离长短反映出搜素精度)。

每只蝙蝠初始位置是随机的,在初始位置时刻其中一只蝙蝠对应的函数最值,算法开始会记录该位置,然后所有蝙蝠逐渐向该位置靠近,飞行方向大致向当前最值方向(即该方向的位置该蝙蝠的出现频率更高),但是在飞行方向也是随机飞行的,相当于逐步搜索过去。蝙蝠飞行过程中不会因为当前飞行出现的最大值位置而改变种群的飞行趋势,这样可以尽量避免算法陷入局部极值。

算法每飞行一次就记录一次种群所处位置的最值,最后找出记录中的最值。

算法有两个参数可以影响最终的结果:种群数量和飞行次数。其中种群数量的影响是最大的。 

详细步骤

3.1 初始化相关参数

蝙蝠的位置为Xi,飞行速度Vi,声音响度为Ai,频率yi范围,设有目标函数为 :

3.2 更改脉冲频率产生的解并更变蝙蝠位置与飞行速度

蝙蝠i在t-1时的位置和飞行速度分别表示为,群体当前找到的最优位置为。接着根据自身发出不同的音响搜寻猎物,通过接受反馈信息来调整位置xi和飞行速度v(i)。其飞行的速度更变公式如下:

w(t)其中为时刻变速惯性权重因子,作用是使蝙蝠的前期搜索对后期搜索提供参照,wmax为w(t)的最大值、wmin为w(t)的最小值;,一般取2,Tmax为最大迭代次数;为当前位置最优解;y(i)为频率满足正态均匀分布的一个随机数,β是一个随机变量,且。开始运行时,蝙蝠在随机进行频率分配。

为控制蝙蝠所处位置在自变量范围内,本文针对该情况设置了边界规则:如果下次运动的位置超出了自变量范围,那么下次飞行的位置为投影在的边界上的位置。

3.3 搜寻局部最优解

3.4 通过蝙蝠多次飞行产生多个新解,进行全局搜索,若得到的新解

那么接受该解。

3.5 排列所有蝙蝠的位置,并找出当前最优值及对应的位置

3.6 设当前最优解为,然后使所有蝙蝠继续向下一时刻运动,并返回步骤2重新计算。

3.7 时刻结束,输出:最优解

4 Python实现

4.1 代码

#=========导入相关库===============
import numpy as np
from numpy.random import random as rand

#========参数设置==============
# objfun:目标函数
# N_pop: 种群规模,通常为10到40
# N_gen: 迭代数
# A: 响度(恒定或降低)
# r: 脉冲率(恒定或减小)
# 此频率范围决定范围
# 如有必要,应更改这些值
# Qmin: 频率最小值
# Qmax: 频率最大值
# d: 维度
# lower: 下界
# upper: 上界

def bat_algorithm(objfun, N_pop=20, N_gen=1000, A=0.5, r=0.5,
    Qmin=0, Qmax=2, d=10, lower=-2, upper=2):

    N_iter = 0 # Total number of function evaluations

    #=====速度上下限================
    Lower_bound = lower * np.ones((1,d))
    Upper_bound = upper * np.ones((1,d))

    Q = np.zeros((N_pop, 1)) # 频率
    v = np.zeros((N_pop, d)) # 速度
    S = np.zeros((N_pop, d))

    #=====初始化种群、初始解=======
    # Sol = np.random.uniform(Lower_bound, Upper_bound, (N_pop, d))
    # Fitness = objfun(Sol)
    Sol = np.zeros((N_pop, d))
    Fitness = np.zeros((N_pop, 1))
    for i in range(N_pop):
        Sol[i] = np.random.uniform(Lower_bound, Upper_bound, (1, d))
        Fitness[i] = objfun(Sol[i])

    #====找出初始最优解===========
    fmin = min(Fitness)
    Index = list(Fitness).index(fmin)
    best = Sol[Index]

    #======开始迭代=======
    for t in range(N_gen):

        #====对所有蝙蝠/解决方案进行循环 ======
        for i in range(N_pop):
            # Q[i] = Qmin + (Qmin - Qmax) * np.random.rand
            Q[i] = np.random.uniform(Qmin, Qmax)
            v[i] = v[i] + (Sol[i] - best) * Q[i]
            S[i] = Sol[i] + v[i]

            #===应用简单的界限/限制====
            Sol[i] = simplebounds(Sol[i], Lower_bound, Upper_bound)
            # Pulse rate
            if rand() > r:
                # The factor 0.001 limits the step sizes of random walks
                S[i] = best + 0.001*np.random.randn(1, d)

            #====评估新的解决方案 ===========
            # print(i)
            Fnew = objfun(S[i])
            #====如果解决方案有所改进,或者声音不太大,请更新====
            if (Fnew <= Fitness[i]) and (rand() < A):
                Sol[i] = S[i]
                Fitness[i] = Fnew

            #====更新当前的最佳解决方案======
            if Fnew <= fmin:
                best = S[i]
                fmin = Fnew

        N_iter = N_iter + N_pop

    print('Number of evaluations: ', N_iter)
    print("Best = ", best, '\n fmin = ', fmin)

    return best

def simplebounds(s, Lower_bound, Upper_bound):

    Index = s > Lower_bound
    s = Index * s + ~Index * Lower_bound
    Index = s < Upper_bound
    s = Index * s + ~Index * Upper_bound

    return s

#====目标函数=============
def test_function(u):
    a = u ** 2
    return a.sum(axis=0)

if __name__ == '__main__':
    # print(bat_algorithm(test_function))
    bat_algorithm(test_function)

4.2 结果

5 Matlab实现

5.1 代码

clear
wmax=0.9;%惯性权重最大值
wmin=0.4;%惯性权重最小值
n=10000; % 群体大小
A=rand(1,n); % 声音响度 (不变或者减小)
%% 频率范围
Qmin=0; % 最低频率
Qmax=1; % 最高频率
d=2;% 搜索变量的维数(即频率和速度)
%% 初始矩阵
Q=zeros(n,1); % 频率矩阵初始化
v=zeros(n,d); % 速度矩阵初始化,初始化意义就是产生一个初始矩阵
%% x自变量范围
u=-3;
o=12.1;
% y自变量范围
p=4.1;
l=5.8;
%% 初始化群体/解
for i=1:n
    Sol(i,1)=-3+(12.1+3)*rand(1,1);%x自变量范围【-3,12.1】
    Sol(i,2)=4.1+(5.8-4.1)*rand(1,1);%y自变量【4.1,5.8范围】
    %将随机生成的两个自变量带入函数式
    Fitness(i)=Fun(Sol(i,:));%函数值
end
%% 寻找当前最优解
[fmax,I]=max(Fitness);
best=Sol(I,:);
T=100;%飞行次数
%% 开始飞行
for t=1:T
    for i=1:n,
        Q(i)=Qmin+(Qmin-Qmax)*rand;%rand均匀分布的随机数
        %v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i);(原速度)
        w=(wmax-wmin)*exp(-2*(t/T)^2)+wmin;%惯性权重因子
        v(i,:)=w*v(i,:)+(Sol(i,:)-best)*A(i)*Q(i);%更改后的速度
        S(i,:)=Sol(i,:)+v(i,:);%位置移动
       %% 边界问题,如果下次飞行超出自变量范围外了,那么下次飞行的位置为投影在的边界上的位置
        %x轴
        if S(i,1)>o
            S(i,1)=o;
        end
        if S(i,1)<u
            S(i,1)=u;
        end
        %y轴
        if S(i,2)>l
            S(i,2)=l;
        end
        if S(i,2)<p
            S(i,2)=p;
        end
        %% 评估该次飞行后产生的新解
        Fnew(i)=Fun(S(i,:));
    end
    [Fmax,Z]=max(Fnew);%找出该次飞行后产生的最大值
    C(t,:)=S(Z,:);
    FFnew(t)=Fmax;
end
[Ffmax,N]=max(FFnew);%找出整个飞行过程中的最大值
M=C(N,:)
Ffmax
%目标函数
function z=Fun(u)
   z=21.5+u(1)*sin(4*pi*u(1))+u(2)*sin(20*pi*u(2));

5.2 结果

5.3 展望

如果是其他函数怎么办呢?

函数z=21.5+u(1)*sin(4*pi*u(1))+u(2)*sin(20*pi*u(2))中的两个自变量对应程序中的是Sol(i,1)=-3+(12.1+3)*rand(1,1);%x自变量范围【-3,12.1】和Sol(i,2)=4.1+(5.8-4.1)*rand(1,1);%y自变量【4.1,5.8范围】,两自变量产生的是列矩阵,而程序中Sol(i,:) 提取的是矩阵中的行,所以如果对该函数增减自变量,或者想求其他含有多个自变量的函数,程序中只用修改以下程序部分,其他参数也可以自行更改(注:自变量的范围和个数增加了,那么种群个数和飞行次数务必要增加):

Sol(i,1)=-3+(12.1+3)*rand(1,1);%x自变量范围【-3,12.1】

Sol(i,2)=4.1+(5.8-4.1)*rand(1,1);%y自变量【4.1,5.8范围】

% x自变量范围

u=-3;

o=12.1;

% y自变量范围

p=4.1;

l=5.8;

到此这篇关于Python和Matlab实现蝙蝠算法的示例代码的文章就介绍到这了,更多相关Python和Matlab蝙蝠算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python编程实现蚁群算法详解

    简介 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值. 定义 各个蚂蚁在没有事先告诉

  • 手把手教你python实现SVM算法

    什么是机器学习 (Machine Learning) 机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域. 机器学习的大致分类: 1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属,例如手写识别(识别是不是这个数). 2)问题求解:要求对于给定的目标状态,寻找一个将当前状态转换为目标状态的动作序

  • Python编程实现粒子群算法(PSO)详解

    1 原理 粒子群算法是群智能一种,是基于对鸟群觅食行为的研究和模拟而来的.假设在鸟群觅食范围,只在一个地方有食物,所有鸟儿看不到食物(不知道食物的具体位置),但是能闻到食物的味道(能知道食物距离自己位置).最好的策略就是结合自己的经验在距离鸟群中距离食物最近的区域搜索. 利用粒子群算法解决实际问题本质上就是利用粒子群算法求解函数的最值.因此需要事先把实际问题抽象为一个数学函数,称之为适应度函数.在粒子群算法中,每只鸟都可以看成是问题的一个解,这里我们通常把鸟称之为粒子,每个粒子都拥有: 位置,可

  • python实现RSA加密(解密)算法

    RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. 今天只有短的RSA钥匙才可能被强力方式解破.到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式.只要其密钥的长度足够长,用RSA加密的信息实际上是不能被解破的.但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战. RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥.

  • python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

    一.分散性聚类(kmeans) 算法流程: 1.选择聚类的个数k. 2.任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心. 3.对每个点确定其聚类中心点. 4.再计算其聚类新中心. 5.重复以上步骤直到满足收敛要求.(通常就是确定的中心点不再改变. 优点: 1.是解决聚类问题的一种经典算法,简单.快速 2.对处理大数据集,该算法保持可伸缩性和高效率 3.当结果簇是密集的,它的效果较好 缺点 1.在簇的平均值可被定义的情况下才能使用,可能不适用于某些应用 2.必须事先给出k(要生成的簇的数

  • python使用rsa加密算法模块模拟新浪微博登录

    PC登录新浪微博时,在客户端用js预先对用户名.密码都进行了加密,而且在POST之前会GET一组参数,这也将作为POST_DATA的一部分.这样,就不能用通常的那种简单方法来模拟POST登录(比如人人网). 通过爬虫获取新浪微博数据,模拟登录是必不可少的. 1.在提交POST请求之前,需要GET获取四个参数(servertime,nonce,pubkey和rsakv),不是之前提到的只是获取简单的servertime,nonce,这里主要是由于js对用户名.密码加密方式改变了. 1.1 由于加密

  • python实现协同过滤推荐算法完整代码示例

    测试数据 http://grouplens.org/datasets/movielens/ 协同过滤推荐算法主要分为: 1.基于用户.根据相邻用户,预测当前用户没有偏好的未涉及物品,计算得到一个排序的物品列表进行推荐 2.基于物品.如喜欢物品A的用户都喜欢物品C,那么可以知道物品A与物品C的相似度很高,而用户C喜欢物品A,那么可以推断出用户C也可能喜欢物品C. 不同的数据.不同的程序猿写出的协同过滤推荐算法不同,但其核心是一致的: 1.收集用户的偏好 1)不同行为分组 2)不同分组进行加权计算用

  • 用Python实现通过哈希算法检测图片重复的教程

    Iconfinder 是一个图标搜索引擎,为设计师.开发者和其他创意工作者提供精美图标,目前托管超过 34 万枚图标,是全球最大的付费图标库.用户也可以在 Iconfinder 的交易板块上传出售原创作品.每个月都有成千上万的图标上传到Iconfinder,同时也伴随而来大量的盗版图.Iconfinder 工程师 Silviu Tantos 在本文中提出一个新颖巧妙的图像查重技术,以杜绝盗版. 我们将在未来几周之内推出一个检测上传图标是否重复的功能.例如,如果用户下载了一个图标然后又试图通过上传

  • Python实现的凯撒密码算法示例

    本文实例讲述了Python实现的凯撒密码算法.分享给大家供大家参考,具体如下: 一 介绍 凯撒密码是一种非常古老的加密方法,相传当年凯撒大地行军打仗时为了保证自己的命令不被敌军知道,就使用这种特殊的方法进行通信,以确保信息传递的安全.他的原理很简单,说到底就是字母于字母之间的替换.下面让我们看一个简单的例子:"baidu"用凯撒密码法加密后字符串变为"edlgx",它的原理是什么呢?把"baidu"中的每一个字母按字母表顺序向后移3位,所得的结果

  • Python和Matlab实现蝙蝠算法的示例代码

    目录 1前言 2 蝙蝠算法原理细讲 3 详细步骤 4Python实现 4.1代码 4.2结果 5Matlab实现 5.1 代码 5.2 结果 5.3 展望 1 前言 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法.该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度.该算法具有实现简单.参数少等特点. 该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现

  • Python实现异常检测LOF算法的示例代码

    目录 背景 LOF算法 1.k邻近距离 2.k距离领域 3.可达距离 4.局部可达密度 5.局部异常因子 LOF算法流程 LOF优缺点 Python实现LOF PyOD Sklearn 大家好,我是东哥. 本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法. 背景 Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3

  • Python实现孤立随机森林算法的示例代码

    目录 1 简介 2 孤立随机森林算法 2.1 算法概述 2.2 原理介绍 2.3 算法步骤 3 参数讲解 4 Python代码实现 5 结果 1 简介 孤立森林(isolation Forest)是一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或基尼指数来选择. 2 孤立随机森林算法 2.1 算法概述 Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好

  • Python实现12种降维算法的示例代码

    目录 为什么要进行数据降维 数据降维原理 主成分分析(PCA)降维算法 其它降维算法及代码地址 1.KPCA(kernel PCA) 2.LDA(Linear Discriminant Analysis) 3.MDS(multidimensional scaling) 4.ISOMAP 5.LLE(locally linear embedding) 6.t-SNE 7.LE(Laplacian Eigenmaps) 8.LPP(Locality Preserving Projections) 网

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

  • Python 实现大整数乘法算法的示例代码

    我们平时接触的长乘法,按位相乘,是一种时间复杂度为 O(n ^ 2) 的算法.今天,我们来介绍一种时间复杂度为 O (n ^ log 3) 的大整数乘法(log 表示以 2 为底的对数). 介绍原理 karatsuba 算法要求乘数与被乘数要满足以下几个条件,第一,乘数与被乘数的位数相同:第二,乘数与被乘数的位数应为  2 次幂,即为 2 ^ 2,  2 ^ 3, 2 ^ 4, 2 ^ n 等数值. 下面我们先来看几个简单的例子,并以此来了解 karatsuba 算法的使用方法. 两位数相乘 我

  • Python&Matlab实现灰狼优化算法的示例代码

    目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进.在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度. 灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第

  • Python实现曲线点抽稀算法的示例

    本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折

  • python实现经典排序算法的示例代码

    以下排序算法最终结果都默认为升序排列,实现简单,没有考虑特殊情况,实现仅表达了算法的基本思想. 冒泡排序 内层循环中相邻的元素被依次比较,内层循环第一次结束后会将最大的元素移到序列最右边,第二次结束后会将次大的元素移到最大元素的左边,每次内层循环结束都会将一个元素排好序. def bubble_sort(arr): length = len(arr) for i in range(length): for j in range(length - i - 1): if arr[j] > arr[j

  • Python实现七大查找算法的示例代码

    查找算法 -- 简介 查找(Searching)就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素.     查找表(Search Table):由同一类型的数据元素构成的集合     关键字(Key):数据元素中某个数据项的值,又称为键值     主键(Primary Key):可唯一的标识某个数据元素或记录的关键字 查找表按照操作方式可分为:         1.静态查找表(Static Search Table):只做查找操作的查找表.它的主要操作是:         ①

随机推荐